

HIWIN INDUSTRIE 4.0 Best Partner

Robot Multi Asse

Pick and place / Assemblaggio / Packaging / Semiconduttori / Industria Elettro-Ottica / Industria Automotive / Industria cibaria

- Articulated robot
- Delta Robot
- SCARA robot Wafer Robot
- Pinze Elettriche
- Pinze Elettriche integrateRotary Joint

Assi lineari

Precisione / semiconduttori / Settore medicale / FPD

- KK, SK
- KS, KA
- KU, KE, KC

Attrezzature mediche

Ospedali / Centri Riabilitativi

- Robotic Gait Training System
- Hygiene System
- Robotic Endoscope Holder

Viti a Ricircolo di Sfere

Di precisione / Rullate

- Serie Super S Serie Super T
- Mini Roller
- Serie ad alto carico
- Ball Spline

Guide Lineari

Automazione / Semiconduttori / Settore medicale

- HG, EG, WE, MG, CG
- QQH, QE, QW, QR
- RG, E2, PG, SE, RC

Tavole Rotanti

Settore aerospaziale / Medicale / Industria Automotive / Macchine Utensili / Macchine industriali

- RAB-800
- RAB-500

Cuscinetti

Macchine utensili / Robot

- Cuscinetti BSB
- Cuscinetti Lineari
- Supporti

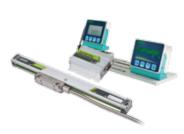
Azionamenti e servomotori

Semiconduttori / Macchine Packaging / SMT / Industria cibaria / LCD

- D1, D1-N, D2T
- Motori 50W 2000W

Motori Torque

Ispezione / Equipaggiamento test / Macchine utensili / Robot


- Tavole Rotanti -TMS, TMY, TMN
- Serie TMRW

Sistemi con Motori Lineari

Trasporto automatico / Applicazione AOI / Precisione / Semiconduttori

- Motore Lineare Iron-core
- Motore Lineare Coreless
- Motore Lineare Turbo LMT Motore servo Planare
- Piattaforma air bearing
- X-Y Stage Sistemi Gantry

Sistemi di misura e posizionamento

Macchine da taglio / Macchine fresatrici

- Alta risoluzione
- Trasferimento di segnale
- Alta precisione
- Alta efficienza

Sistemi di Guide Lineari

Guide Lineari & accessori

Una guida lineare consente di ottenere un moto lineare basato sull'utilizzo di corpi volventi, come sfere o rulli. Attraverso il ricircolo dei corpi volventi tra la rotaia e il carrello, la guida lineare consente di ottenere un moto lineare estremamente preciso. Il coefficiente di attrito di una guida lineare è solo un cinquantesimo di quello di un sistema tradizionale a strisciamento. L'eccezionale efficienza e l'assenza completa di gioco fanno sì che le guide lineari possano essere utilizzate in vari modi.

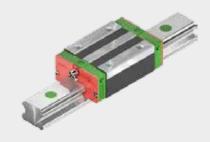
GW-IT-20-06 3

Indice

Indice

1	Panoramica del prodotto	6
2	Informazioni Generali	8
2.1	Vantaggi e caratteristiche	8
2.2	Criteri di selezione	9
2.3	Coefficienti di carico	10
2.4	Calcolo durata utile	11
2.5	Carichi applicati	13
2.6	Attrito e lubrificazione	15
2.7	Configurazione di montaggio	16
2.8	Assemblaggio	17
2.9	Sistemi di tenuta	22
2.10	Tecnologia SynchMotion™	24
2.11	Guide lineari per alta temperatura SE	25
2.12	Rivestimenti HIWIN contro la corrosione per guide lineari	26
3	Guide Lineari	29
3.1	Serie HG e QH	29
3.2	Serie EG e QE	47
3.3	Serie CG	62
3.4	Serie WE/QW	77
3.5	Serie MG	89
3.6	Serie RG e QR	102
3.7	Serie PG	119
4	Accessori	126
4.1	Adattatori per sistemi lubrificanti	126
4.2	Lubrificanti e pompe per ingrassaggio HIWIN	
5	Istruzioni di assemblaggio Guide Lineari	130
		131

6W-IT-20-06 **5**


1. Panoramica del prodotto

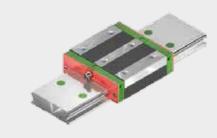
Guide lineari, serie HG e QH

Pag. 29

- O Guida a 4 ricircoli di sfere
- Angolo di contatto di 45°
- Elevata capacità di carico in tutte le direzioni
- > Elevata Rigidità
- Carrello con tecnologia SynchMotion™ (serie QH)

Guide lineari, serie EG e QE

Pag. 47


- O Guida a 4 ricircoli di sfere
- Angolo di contatto di 45°
- Elevata capacità di carico in tutte le direzioni
- O Ridotta altezza di montaggio
- o Carrello con tecnologia SynchMotion™ (serie QE)

Guide lineari, serie CG

Pag. 62

- O Guida a 4 ricircoli di sfere
- o Disposizione ad O con angolo di contatto di 45°
- Elevata capacità di carico torsionale, in particolare elevata rigidezza al rollio
- O Opzionale: rotaia con lamierino di copertura

Guide lineari, serie WE e QW

Pag. 77

- o Guida a 4 ricircoli di sfere
- Angolo di contatto di 45°
- O Elevata capacita di carico a momento
- O Adatta per applicazioni monoguida
- Ridotta altezza di montaggio
- Carrello con tecnologia SynchMotion™ (serie QW)

Guide lineari, serie MG

Pag. 89

- o Guida a 2 ricircoli di sfere
- Angolo di contatto di 45°
- Esecuzione compatta
- Disponibile in versione stretta e larga

Guide lineari, serie RG e QR

Pag. 102

- o Guida a 4 ricircoli di rulli
- Angolo di contatto di 45°
- O Sistema a ricircolo di rulli
- O Capacità di carico molto elevata
- Massima rigidità e precisione
- o Carrello con tecnologia SynchMotion™ (serie QR)

Guide lineari, serie PG

Pag. 119

- O Serie HG con sistema di posizionamento integrato
- Misurazione distanza a contatto zero
- Montaggio ed assemblaggio semplici
- Segnale uscente in tempo reale

Accessori

Pag. 126

- Ingrassatore
- Adattatore per lubrificazione
- Raccordi a pressione

GW-IT-20-06

Informazioni Generali

2. Informazioni Generali

2.1 Vantaggi e caratteristiche

1. Massima precisione di posizionamento

Una tavola montata su una guida lineare deve solo superare l'attrito volvente. La differenza tra coefficiente di attrito statico e dinamico è trascurabile, così la forza di primo distacco è uguale, al netto delle tenute, alla forza necessaria a mantenere il moto. Gli effetti di stick-slip sono inesistenti.

2. Lunga durata ed estrema precisione di movimento

In un sistema di tipo tradizionale, le differenze di spessore del lubrificante possono causare errori di precisione. L'attrito radente e una lubrificazione spesso insufficiente aumentano l'usura, riducendo il grado di precisione. Al contrario, la guida lineare ha un attrito volvente molto ridotto, unito ad un grado di usura estremamente basso. Di conseguenza la precisione della guida rimane praticamente invariata per tutta la sua durata utile.

3. Alta velocità con una forza motrice ridotta

I bassi coefficienti di attrito permettono l'impiego di piccole forze motrici. Di conseguenza, la potenza richiesta è bassa anche in presenza di moto alternato con alta dinamica.

4. Capacità di carico costante in tutte le direzioni

Grazie a uno speciale design, una guida lineare è in grado di supportare carichi sia in direzione verticale che in direzione orizzontale.

5. Semplicità di installazione e intercambiabilità

L'installazione di una guida lineare è piuttosto semplice. Dopo aver fresato o rettificato la superficie di montaggio basta seguire la procedura di installazione per ottenere un moto estremamente preciso.

Le guide tradizionali richiedono uno sforzo di assemblaggio molto superiore, poiché le superfici di scorrimento devono essere raschiate. I componenti singoli, se non opportunamente raschiati, non sono intercambiabili. Le guide lineari sono, al contrario, intercambiabili senza alcun tipo di modifica e/o intervento.

6. Semplicità di lubrificazione

In un sistema di guida tradizionale, una lubrificazione insufficiente distrugge le superfici di contatto. Il lubrificante deve essere applicato in molti punti lungo le superfici di scorrimento. Una guida lineare richiede solo una minima lubrificazione, che può essere effettuata grazie ad un semplice sistema centralizzato direttamente sul carrello. HIWIN può inoltre fornire carrelli con un sistema di lubrificazione a olio integrato, grazie a un serbatoio intercambiabile per l'olio, per una lubrificazione prolungata, applicato frontalmente al carrello.

7. Protezione anticorrosione

Per ottenere una protezione anticorrosione ottimale, i carrelli e le rotaie possono essere forniti con diversi rivestimenti. Le singole procedure selezionate dipendono dall'applicazione. I dati relativi alle condizioni ambientali e alle sostanze corrosive sono necessari per segliere il rivestimento ottimale. La guida lineare miniaturizzata MG è prodotta in acciaio inox (SUS 420).

2.2 Criteri di selezione

Stabilire le condizioni di selezione

- Tipo di apparecchiatura
- Limitazioni di spazio
- Precisione desiderata
- Rigidezza richiesta
- o Tipo di carichi

- Lunghezza della corsa
- Velocità di movimento, accelerazione
- Frequenza di utilizzo
- Durata utile
- Condizioni ambientali

¥

Selezionare la serie

- O Serie HG e CG Rettificatrici, fresatrici e foratrici, torni, centri di lavoro, lavorazione legno
- Serie EG Apparecchiature automatiche, dispositivi di trasferimento ad alta velocità, apparecchiature per semiconduttori, strumenti per misure di precisione
- Serie WE Asse singolo con elevato carico a momento Mx
- O Serie MG Dispositivi in miniatura, apparecchiature per semiconduttori, apparecchiature mediche.
- O Serie RG Centri di lavorazione, presse a iniezione, macchine e sistemi ad elevata rigidità, macchine per la deformazione.

Selezionare la precisione

O Classi C, H, P, SP, UP, a seconda della precisione dell'apparecchiatura.

Determinare le dimensioni e il numero dei carrelli

- O A seconda dei valori empirici
- A seconda del tipo di carico
- Se la guida è associata a una vite a ricircolo di sfere, la dimensione della guida lineare deve essere prossima a quella della vite, ad es.,vite a ricircolo di sfere da 32, rotaia da 35.

Calcolare il carico massimo del carrello

Calcolare il carico massimo facendo riferimento agli esempi di calcolo del carico (cfr. Capitolo 2.5)
 Verificare che il fattore di sicurezza statico della guida prescelta sia superiore al fattore di sicurezza statico nominale (Cfr. cap. 2.3.3)

Selezionare il precarico

o Il precarico dipende dai requisiti di rigidezza e precisione della superficie di montaggio.

Determinare la rigidezza

 Calcolare la deformazione (δ) utilizzando la tabella dei valori di rigidezza; la rigidezza aumenta all'aumentare del precarico e delle dimensioni della guida.

Calcolare la durata utile

 Calcolare i requisiti di durata utile in base alla velocità e alla frequenza del movimento: fare riferimento agli esempi di calcolo della durata (cfr. Capitolo 2.4).

Scegliere il tipo di lubrificazione

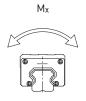
- O Grasso introdotto tramite ingrassatore.
- Olio erogato tramite la linea di collegamento

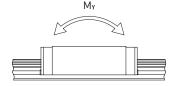
Fine della selezione

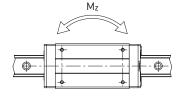
GW-IT-20-06

Informazioni Generali

2.3 Coefficienti di carico


2.3.1 Coefficiente di carico statico Co


Sia in condizioni statiche che dinamiche, quando la guida lineare viene sottoposta a un carico eccessivo oppure subisce un urto, si verifica una deformazione locale permanente tra il carrello e i corpi volventi. Se supera un determinato limite, tale deformazione permanente impedisce il corretto funzionamento della guida lineare. In generale, il coefficiente di carico statico viene definito come il carico statico di entità e direzione costante che determina una deformazione permanente totale


pari a 1/10.000 del diametro del corpo volvente, nel punto di contatto che subisce la massima sollecitazione. Tale valore è indicato nelle tabelle dimensionali delle singole guide lineari. Tali tabelle possono essere utilizzate come riferimento per scegliere la guida lineare più adatta Il massimo carico statico applicato a una guida lineare non deve superare il coefficiente di carico statico.

2.3.2 Momento statico ammissibile Mo

Il momento statico ammissibile è il momento con direzione e grandezza specifiche presente quando la massima sollecitazione dei corpi volventi è uguale alla sollecitazione indotta dal coefficiente di carico statico. Il momento statico ammissibile viene definito per tre direzioni (MX, MY e MZ) per i sistemi a movimento lineare.

2.3.3 Fattore di sicurezza statico

È necessario tenere conto del fattore di sicurezza statico, che dipende dalle condizioni ambientali e operative, quando il sistema di guida è statico o si muove a bassa velocità. Un fattore di sicurezza elevato è particolarmente importante per le guide soggette a urti (vedere la Tabella 2.1). Per calcolare il carico statico, è possibile utilizzare F 2.1.

$$f_{SL} = \frac{C_0}{P}$$
; $f_{SM} = \frac{M_0}{M}$

Si noti che: La capacità di carico della guida lineare è spesso limitata non tanto dalla resistenza al carico, quanto dal collegamento con le viti di fissaggio alla struttura. Di conseguenza, si raccomanda di controllare la capacità di carico massima ammissibile del collegamento meccanico carrello/rotaia sia alla tavola che al basamento.

SL Fattore di sicurezza statico

f_{SM} Fattore di sicurezza statico per il momento

 C_0 Coefficiente di carico statico (N)

 $M_0 \quad \text{Momento statico ammissibile [Nm]}$

P Carico di lavoro statico equivalente [N]

M Momento statico equivalente [Nm]

Tabella 2.1 Fattore di sicurezza statico						
Condizione di carico	f _{SL} ; f _{SM} [min.]					
Carico normale	3.00 – 5.00					
Con urti e vibrazioni	5.00 – 7.00					
Con urti/vibrazioni/forze di lavoro di elevata intensità	> 7.00					

2.3.4 Coefficiente di Carico Dinamico C_{dyn}

Il coefficiente di carico dinamico è definito come il massimo carico con entità e direzione costanti che determina una durata nominale di servizio pari a 50 km ¹⁾ (HG, QH, EG, QE, CG, WE, QW, MG) o 100 km ¹⁾ (RG, QR).I valori del coefficiente di carico dinamico dei singoli carrelli sono riportati nelle tabelle dimensionalie possono essere utilizzati per calcolare la durata utile della guida lineare prescelta.

 C_{dyn} 50 km = 1.26 × C_{dyn} 100 km (serie HG, QH, EG, QE, CG, WE, QW, MG)

 C_{dyn} 50 km = 1.23 × C_{dyn} 100 km (serie RG, QR)

¹⁾ Il coefficiente di carico dinamico delle guide lineari è definito per una durata nominale di 50 o 100 km, a seconda del produttore. Per convertire il coefficiente di carico dinamico si possono utilizzare i seguenti fattori:

2.4 Calcolo durata utile

2.4.1 Definizione di durata utile

Caricare ripetutamente e continuamente la pista di rotolamento e i corpi volventi di una guida lineare causa usura a fatica della pista stessa. In ultima analisi, questo porta a un fenomeno noto come "pitting". La durata di una guida lineare è definita come la distanza totale percorsa finché sulla superficie della pista di rotolamento o dei corpi volventi non si verificano segni di usura e fatica.

2.4.2 Durata Nominale (L)

La durata utile può variare considerevolmente anche quando le guide lineari vengono prodotte nello stesso modo o utilizzate nelle stesse condizioni di movimento. La durata nominale deve quindi essere considerata **una stima approssimativa della durata utile di una guida lineare.** La durata nominale è la distanza totale che il 90% di un lotto di 100 guide utilizzate in condizioni identiche, può percorrere senza usurarsi.

2.4.2.1 Calcolo della durata nominale

Il carico agente influisce sulla durata nominale di una guida lineare, che può essere calcolata con le formule F 2.2 e F 2.3, utilizzando il coefficiente di carico dinamico e il carico dinamico equivalente selezionati.

Formule per il calcolo della durata nominale (L)

Serie HG, QH, EG, QE, CG, WE, QW, MG:

F 2.2

$$L = \left(\frac{C_{dyn}}{P}\right)^3 \times 50 \, \text{km}$$

Serie RG, QR:

F 2.3

$$L = \left(\frac{C_{dyn}}{P}\right)^{10/3} \times 100 \, \text{km}$$

2.4.2.2 Fattori che influiscono sulla durata nominale

Il tipo di carico, la durezza della pista di rotolamento e la temperatura della guida hanno un impatto notevole sulla durata nominale. Le Formule F 2.4 e F 2.5 mostrano la relazione tra questi fattori.

Fattore di durezza (fh)

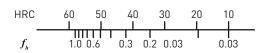
La pista di rotolamento ha una durezza di 58-62 HRC.Il fattore di durezza è 1.0. Se la durezza non è questa, si dovrà utilizzare il fattore di durezza indicato a destra. Se non è possibile ottenere la durezza specificata, si riduce il carico ammissibile. In tale situazione, nel calcolo è necessario moltiplicare il coefficiente di carico dinamico e il coefficiente di carico statico per il fattore di durezza.

Fattore di temperatura (f_t)

Le piste di rotolamento standard possono essere utilizzate in un intervallo di temperatura ambiente da -10°C a +80°C. A temperature fino a 150°C si devono usare guide lineari con end cap metallico (identificate nel codice tipo dall'aggiunta di "/SE").

Con questo modello sono possibili applicazioni con temperature ambiente fino a 180°C.

Con questo modello sono possibili applicazioni con temperature ambiente fino a 180°C. Tuttavia, suggeriamo di contattare il nostro supporto tecnico per conferma. Se la temperatura di una guida lineare supera i 100°C, il carico ammissibile e la durata utile diminuiscono. Di conseguenza, è necessario moltiplicare i coefficienti di carico statico e dinamico per il fattore di temperatura.


Fattore di carico (f_w)

Il carico dinamico equivalente va moltiplicato per il fattore di carico secondo le indicazioni della Tabella 2.2. Questo tiene conto degli effetti esterni sulla durata utile della pista di rotolamento che non sono inclusi direttamente nei calcoli (ad es., vibrazioni, urti e velocità elevate). Per applicazioni a corsa breve (corsa < 2 x lunghezza carrello), il fattore di carico determinato deve essere raddoppiato.

Durata nominale [km]

lyn Coefficiente di carico dinamico [N]

P Carico dinamico equivalente [N]

Informazioni Generali

Tabella 2.2 Fattore di Carico							
Tipo di Carico	Velocità di Servizio	f _w					
Senza urti e vibrazioni	fino a 15 m/min	1.0 – 1.2					
Carico normale	da 15 m/min a 60 m/min	1.2 – 1.5					
Urti lievi	da 60 m/min a 120 m/min	1.5 – 2.0					
Con urti e vibrazioni	oltre 120 m/min	2.0 – 3.5					

Formula per il calcolo della durata nominale (tenendo conto dei fattori di cui sopra)

Serie HG, QH, EG, QE, CG, WE, QW, MG:

F 2.4

$$L = \left(\frac{f_h \times f_t \times C_{dyn}}{f_w \times P}\right)^3 \times 50 \, km$$

Serie RG. QR:

F 2.5

$$L = \left(\frac{f_h \times f_t \times C_{dyn}}{f_{...} \times P}\right)^{10/3} \times 100 \, \text{km}$$

L Durata nominale [km]

fh Fattore di durezza

C_{dvn} Coefficiente di carico dinamico [N]

f_t Fattore di temperatura

P Carico dinamico equivalente [N]

fw Fattore di carico

2.4.3 Calcolo durata utile (L_h)

Per calcolare la durata utile in ore a partire dalla durata nominale si usano la velocità e la freguenza di movimento.

Formula per il calcolo della durata utile (Lh)

Serie HG, QH, EG, QE, CG, WE, QW, MG:

F 2.6

$$L_h = \frac{L}{v \times 60} = \frac{\left(\frac{C_{dyn}}{P}\right)^3 \times 50,000}{v \times 60}$$

Serie RG, QR:

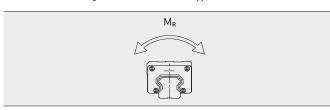
F 2.7

$$L_h = \frac{L}{v \times 60} = \frac{\left(\frac{C_{dyn}}{P}\right)^{10/3} \times 100,000}{v \times 60}$$

L_h Durata [h]

L Durata nominale [m]

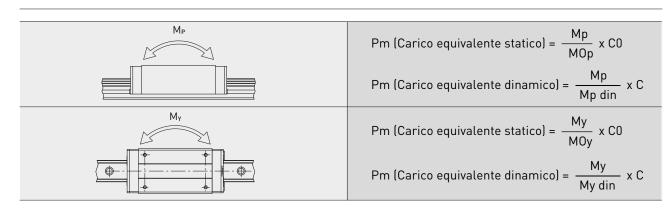
v Velocità [m/min]


C_{dyn}/P Rapporto tra coefficiente di carico e carico

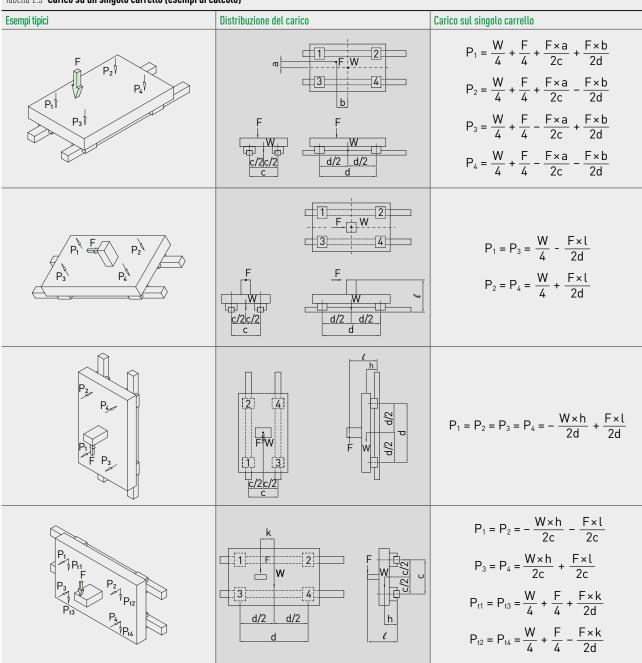
2.5 Carichi applicati

2.5.1 Carichi applicati

Il calcolo dei carichi che agiscono su una guida lineare è influenzato da numerosi fattori, come la posizione del baricentro dell'oggetto, la posizione del comando e le forze inerziali all'arresto e all'avvio. Per ottenere il valore corretto, è necessario valutare attentamente ogni parametro.

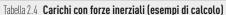

Carichi su carrello singolo in caso di momento applicato

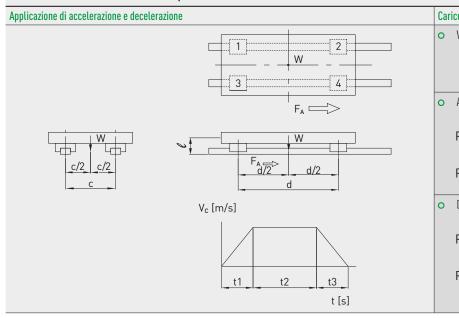
Pm (Carico equivalente statico) =
$$\frac{Mr}{M0r} \times C0$$


Pm (Carico equivalente dinamico) =
$$\frac{Mr}{Mr \text{ din}} \times C$$

Carichi su una tavola con due guide (due carrelli/rotaia)

Tabella 2.3 Carico su un singolo carrello (esempi di calcolo)




- P_{1...}P₄ Carico sul carrello singolo
- W Peso del carico
- F Forza necessaria al moto; altra forza esterna agente
- Distanza tra forza esterna e carrello

- c Distanza tra le rotaie
- d Distanza tra i carrelli
- a, b, k Distanza tra la forza esterna e il centro geometrico
- h Distanza tra baricentro e azionamento del sistema

Informazioni Generali

Carico e forza inerziale

Carico su un singolo carrello

Velocità costante

$$P_1 ... P_4 = \frac{W}{4}$$

Accelerazione

$$P_1 = P_3 = \frac{W}{4} + \frac{1}{2} \times \frac{W}{g} \times \frac{v_c}{t_1} \times \frac{l}{d}$$

$$P_2 = P_4 = \frac{W}{4} - \frac{1}{2} \times \frac{W}{g} \times \frac{v_c}{t_1} \times \frac{l}{d}$$

Decelerazione

$$P_1 = P_3 = \frac{W}{4} - \frac{1}{2} \times \frac{W}{q} \times \frac{v_c}{t_3} \times \frac{l}{d}$$

$$P_2 = P_4 = \frac{W}{4} + \frac{1}{2} \times \frac{W}{g} \times \frac{v_c}{t_3} \times \frac{l}{d}$$

P₁...P₄ Carico sul carrello singolo

W Peso del carico

F Forza di moto F_A Forza di reazione

g Accelerazione gravitazionale [m/s²]

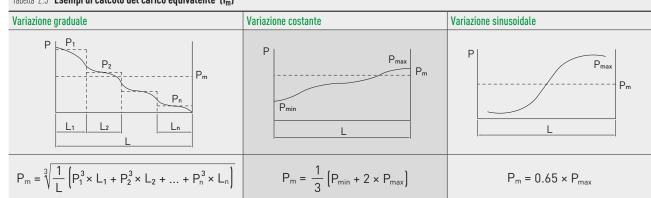
v_c Velocità [m/s]

t₁ Tempo[i] di Accelerazione [s]

t₂ Tempo a velocità costante [s]

t₃ Tempo[i] di decelerazione [s]

c Distanza tra le rotaie [m]


d Distanza tra i carrelli [m]

l Distanza tra baricentro e carrello [m]

2.5.2 Calcolo del carico equivalente in caso di carico variabile

Se il carico applicato a una guida lineare varia considerevolmente, per calcolare la durata è necessario utilizzare un carico equivalente. Il carico equivalente è un carico che causa la stessa usura sui cuscinetti in condizioni di carico variabile. Può essere calcolato utilizzando la Tabella 2.5.

Tabella 2.5 Esempi di calcolo del carico equivalente (Pm)

P_m Carico equivalente

P_n Carico variabile

 $P_{min} \quad Carico \ minimo$

P_{max} Carico massimo

L Distanza totale percorsa

 L_n Distanza percorsa con il carico P_n

2.6 Attrito e lubrificazione

2.6.1 Attrito

L'impiego di corpi volventi nella guida lineare riduce principalmente l'attrito, che è di tipo volvente. Questo rende il coefficiente di attrito di una guida lineare molto basso, fino a 1/50 di quello di una guida tradizionale. In genere, il coefficiente di attrito di una guida lineare è circa 0,004, a seconda della serie. Se il carico è minore o uguale al 10%

del coefficiente di carico dinamico, la resistenza all'avanzamento è dovuta principalmente alla viscosità del grasso, all'attrito fra i corpi volventi e alle tenute. Se invece il carico agente è superiore al 10% del coefficiente di carico dinamico, la resistenza all'avanzamento è dovuta principalmente al carico agente.

F2.8 $F = \mu \times W + S$

F Attrito [N]

S Resistenza dovuta all'attrito [N]

μ Coefficiente di attrito

W Carico [N]

2.6.2 Lubrificazione

Come ogni altro cuscinetto a sfere o a rulli, la guida lineare richiede una lubrificazione appropriata. In linea teorica, per lubrificare si possono usare sia olio sia grasso. Il lubrificante è un elemento fondamentale e deve essere considerato quando si progetta

una macchina. I lubrificanti riducono l'usura, proteggono dalla contaminazione, riducono la corrosione e le loro proprietà prolungano la vita utile.La sporcizia può accumularsi su guide non protette.Questa sporcizia deve essere rimossa regolarmente.

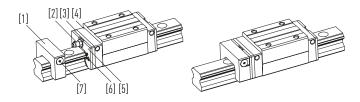
HIWIN produce grassi per varie necessità:

O HIWIN GO1: per applicazioni pesanti

O HIWIN GO2: per applicazioni in camera bianca e sotto vuoto

O HIWIN GO3 per applicazioni ad alta velocità in camera bianca e sotto vuoto

HIWIN G04: per applicazioni ad alta velocità
 HIWIN G05: per applicazioni standard


Per ulteriori informazioni sui lubrificanti HIWIN, consultare la sezione sugli accessori a Pagina 130. Inoltre i dettagli sui lubrificanti HIWIN e sulla lubrificazione delle guide lineari sono disponibili anche nel manuale "Istruzioni di assemblaggio HIWIN per guide lineari", nel sito www.hiwin.it.

2.6.3 Unità per lubrificazione integrata E2

Il sistema a olio E2 è costituito da un ingrassatore inserito nella testa di ricircolo, da un lato, che attraversa la guarnizione terminale e raggiunge il serbatoio dell'olio intercambiabile, applicato esternamente al carrello. Non è necessario smontare il carrello per cambiare il serbatoio dell'olio. Il lubrificante passa dal serbatoio dell'olio all'ingrassatore tramite opportuni feltrini che a loro volta inviano l'olio sulle piste di

L'ingrassatore a olio E2 è disponibile per le serie HG, EG e RG. Le relative dimensioni, i volumi di lubrificante e le frequenze di sostituzione sono indicati nelle sezioni delle varie serie. Serie HG: Pagina 42, serie EG: Pagina 58, serie RG: Pagina 112.

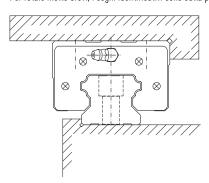
ricircolo della rotaia. L'ingrassatore a olio E2 può essere utilizzato con temperature ambiente tra -10°C e +60°C. La frequenza di sostituzione dipende fondamentalmente dai carichi e dalle condizioni ambientali.Le influenze ambientali, come carichi elevati, vibrazioni e sporco aumentano la frequenza di sostituzione.

Applicazioni

- Macchine Utensili
- Macchine di produzione, presse a iniezione, industria della carta, macchine tessili, industria alimentare, macchine per la lavorazione del legno.
- Industria elettronica, industria dei semiconduttori, tecnologia robotica, tavole incrociate, macchine di misura e prova.
- O Altri settori, attrezzature mediche, automazione, movimentazione industriale.

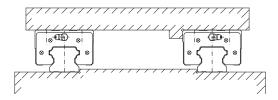
- [1] Serbatoio dell'olio
- [2] Giunto di collegamento
- [3] Ingrassatore
- [4] Sistema di deflessione
- [5] Tenuta di chiusura
- [6] Vite
- [7] Tappo a tenuta

Informazioni Generali

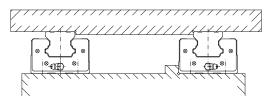

2.7 Configurazione di montaggio

2.7.1 Esempi di posizioni di montaggio tipiche

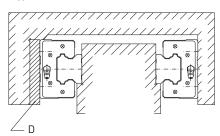
Le guide lineari hanno la stessa capacità di carico in direzione radiale, radiale inversa e laterale.La posizione di montaggio dipende dai requisiti della macchina e dalla direzione di carico. La precisione della rotaia dipende dalla rettilinearità e planarità delle superfici di installazione, dato che non essendo un elemento autoportante si adatta alla struttura su cui viene applicata

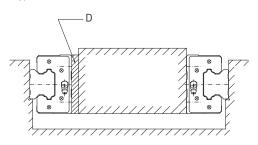

Barra di riferimento si uno spigolo:

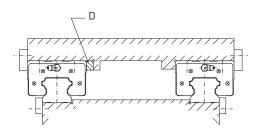
Lo spigolo di riferimento è identificato da frecce sulla parte superiore della rotaia. Per rotaie molto brevi, i segni identificativi sono sulla parte frontale della rotaia.

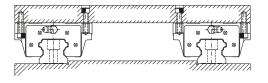


Le rotaie montate su una superficie non opportunamente lavorata possono avere tolleranze maggiori in termini di rettilinearità. Di seguito sono illustrate alcune configurazioni tipiche: I dettagli delle tolleranze di assemblaggio sono disponibili nelle sezioni delle varie serie.


Coppia di rotaie con carrello mobile:


Coppia di rotaie con carrello installato in modo permanente:

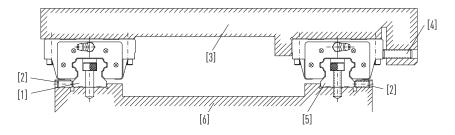

Coppia di carrelli esterni


Coppia di carrelli interni

Montaggio con tutte le superfici di riferimento bloccate:

Carrello di tipo HGW..C con fori di montaggio in direzioni diverse.

) Spessore

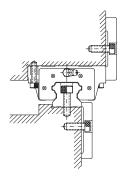


2.8 Assemblaggio

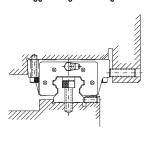
A seconda della precisione di movimento richiesta e dell'entità degli urti o vibrazioni, suggeriamo i tre tipi seguenti di installazione .

2.8.1 Installazione di rotaie con guida di riferimento e vite di regolazione

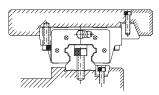
Nelle macchine soggette a forti vibrazioni e urti o forze laterali, può verificarsi uno spostamento di rotaie e carrelli.Per evitare questo inconveniente e raggiungere un'elevata rigidità e precisione di movimento, è consigliabile assemblare la guida lineare con piani di riferimento e morsetti su entrambi i lati.

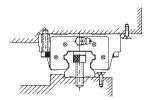


- [1] Guida ausiliaria
- [2] Vite di regolazione della guida
- [3] Carrello
- [4] Vite di regolazione del carrello
- [5] Guida di riferimento
- [6] Basamento macchina

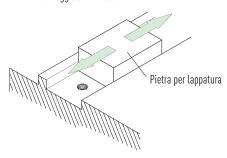

2.8.1.1 Tipi di montaggio

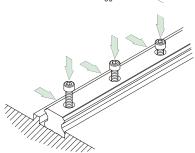
Suggeriamo i quattro metodi di montaggio seguenti:


Montaggio con piastra di bloccaggio:

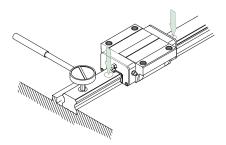

Montaggio con grano di regolazione:

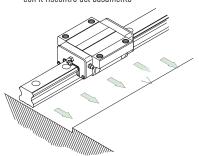
Montaggio con cuneo di bloccaggio:

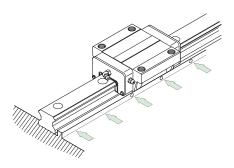

Montaggio con rullino:

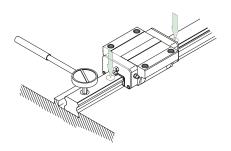

Informazioni Generali

2.8.1.2 Installazione delle rotaie

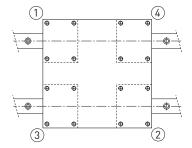

1) Prima di iniziare, rimuovere tutto lo sporco dalla superficie di montaggio della macchina.


3) Mentre la rotaia è appoggiata sulla superficie di riscontro del basamento, verificare il corretto inserimento del gambo filettato quando si inserisce la vite nel foro di fissaggio.


5) Serrare le viti di fissaggio tramite una chiave dinamometrica con la coppia specificata

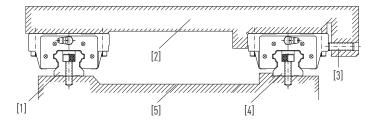

 Appoggiare delicatamente la rotaia sul basamento e portarla a stretto contatto con il riscontro del basamento

4) Serrare i grani di regolazione in sequenza per garantire il contatto ottimale tra la rotaia e il riscontro del basamento.

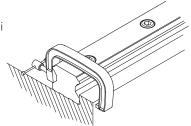


4) Montare la seconda rotaia nello stesso modo.

2.8.1.3 Installazione dei carrelli

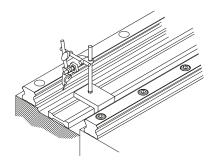

- Posizionare delicatamente la tavola sui carrelli. Serrare provvisoriamente le viti di fissaggio dei carrelli.
- Spingere i carrelli contro il riscontro della tavola e allineare la tavola serrando le viti di regolazione.
- Per fissare uniformemente la tavola, serrare le viti di fissaggio sulla guida di riferimento e sulla guida ausiliaria procedendo in sequenza da 1 a 4.

2.8.2 Installazione di rotaie con piano di riferimento senza viti di spinta

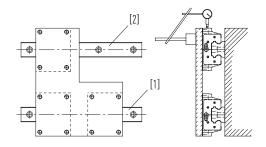

Per assicurare il parallelismo tra la guida ausiliaria e la guida master senza utilizzare viti di regolazione, è consigliabile installare le rotaie con uno dei metodi illustrati di seguito. Per l'installazione del carrello, seguire la procedura illustrata in precedenza.

- [1] Rotaia ausiliaria
- [2] Carrello
- [3] Vite di spinta del carrello
- [4] Rotaia master
- [5] Basamento macchina

2.8.2.1 Installazione della rotaia sul lato della guida master


Disporre la rotaia sul piano di montaggio del basamento. Serrare provvisoriamente le viti di fissaggio, quindi utilizzare un morsetto per spingere la rotaia contro il riscontro laterale del basamento. Serrare in sequenza le viti di fissaggio applicando la coppia specificata

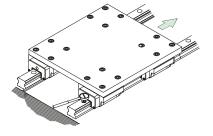
2.8.2.2 Installazione della rotaia sul lato della guida ausiliaria


Metodo basato su riga di controllo:

Utilizzando un comparatore, collocare una riga di controllo tra le rotaie, parallelamente al riscontro laterale della rotaia sul lato della guida master. Quando la rotaia sul lato della guida ausiliaria è parallela a quella della guida master, serrare le viti di fissaggio in sequenza da un estremo all'altro della rotaia.

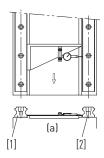
Metodo basato sulla tavola:

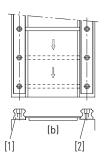
Fissare alla tavola i due carrelli sul lato della guida master.
Fissare temporaneamente un carrello alla tavola sul lato della guida ausiliaria.
Fissare un comparatore alla superficie della tavola e portarlo a contatto con il lato del carrello della guida ausiliaria. Spostare la tavola da un'estremità all'altra della rotaia e allineare la rotaia ausiliaria in parallelo alla rotaia master.
Serrare le viti di fissaggio in ordine sequenziale.



- [1] Rotaia master
- [2] Rotaia ausiliaria

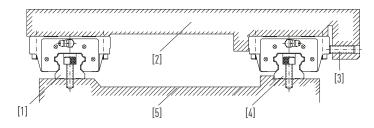
Informazioni Generali


Metodo basato sulla guida master


Quando la guida master è serrata in modo corretto, fissare completamente alla tavola entrambi i carrelli della guida master e uno dei due della guida ausiliaria.Poi, spostare la tavola da un'estremità all'altra della rotaia, serrando completamente le viti di fissaggio della guida ausiliaria.

Metodo basato su maschera di montaggio:

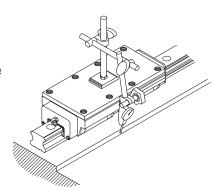
Utilizzando una speciale maschera di montaggio (dima), verificare che la rotaia ausiliaria sia in posizione corretta, quindi serrare in sequenza le viti di fissaggio applicando la coppia specificata.



- [1] Rotaia master
- [2] Rotaia ausiliaria

2.8.3 Installazione di rotaie con piano di riferimento e con vite di spinta

Per assicurare il parallelismo tra la guida ausiliaria e la guida master quando non è presente alcun piano di riferimento, è consigliabile utilizzare il metodo illustrato di seguito. Per l'installazione del carrello, seguire la procedura illustrata in precedenza.

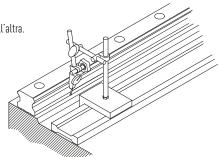


- [1] Rotaia ausiliaria
- [2] Tavola
- [3] Vite di spinta del carrello
- [4] Rotaia ausiliaria
- [5] Basamento macchina

2.8.3.1 Installazione della rotaia sul lato della guida master

Allineamento a un riscontro provvisorio:

Fissare due carrelli a stretto contatto tramite la piastra.Utilizzare il riscontro disponibile sul basamento per allineare la rotaia da un'estremità all'altra. Spostare i carrelli e serrare in sequenza le viti di fissaggio applicando la coppia specificata.



Allineamento a una riga di controllo:

Utilizzare un comparatore e una riga di controllo per allineare la rotaia da un'estremità all'altra. Serrare completamente le viti di fissaggio in sequenza.

La rotaia seguente è montata come descritto al paragrafo 2.8.2.2

"Installazione della rotaia sul lato della guida ausiliaria"

2.8.4 Rotaia giuntata

Per installare una rotaia giuntata (fatta di diversi pezzi) è necessario seguire le frecce riportate sui singoli segmenti. I giunti di ogni sezione sono identificati in ordine alfabetico sequenziale, oltre che dal numero di rotaia/coppia, così che ogni sezione possa essere posizionata chiaramente.

	Sezione 1		Sezione 2		Sezione 3
		Giu	nzione a	Giunzio	one b
Rotaia 1	Rotaia	1a	1a Rotaia	a 1b	1b
Rotaia 2	Rotaia	2a	2a Rotaia	a 2b	2b

2.8.5 Coppia di serraggio delle viti di fissaggio

Il serraggio insufficiente delle viti di fissaggio compromette gravemente la precisione della guida lineare; di conseguenza, raccomandiamo le coppie di serraggio seguenti a seconda delle dimensioni delle viti.

Table 2.6 Coppie di serraggio delle viti di fissaggio ai sensi ISO 4762-12.9							
Dimensioni vite	Coppia [Nm]	Dimensioni vite	Coppia [Nm]				
M2	0.6	M8	30				
M3	2	M10	70				
M4	4	M12	120				
M5	9	M14	160				
M6	13	M16	200				

GW-IT-20-06 21

Informazioni Generali

2.9 Sistemi di tenuta

2.9.1 Sistemi di tenuta SS, ZZ, DD, KK

Le tenute frontali HIWIN in primo luogo impediscono l'ingresso di corpi estranei quali polvere, particolati, schegge o liquidi nelle piste di rotolamento del carrello e, in secondo luogo, riducono le perdite di lubrificante. HIWIN offre diversi sistemi di tenuta a seconda delle condizioni ambientali di applicazione. L'efficacia delle tenute frontali ha ripercussioni dirette sulla durata utile della guida lineare e di conseguenza va presa in considerazione in fase di progettazione e selezionata in modo da adattarsi perfettamente alle condizioni ambientali di applicazione

SS (standard):

Tenute frontali e tenute inferiori

- O Per applicazioni in ambienti con sporco e polvere scarsi
- O Aumento minimo delle forze di attrito

ZZ:

Tenute frontali con tenute inferiori e lamierino metallico.

- Per applicazioni associate a trucioli caldi o particelle di sporco aguzze.
- O Il lamierino metallico protegge la tenuta frontale e ne previene il danneggiamento.

DD:

Doppie tenute frontali e tenute inferiori

- O Per applicazioni associate a quantità consistenti di sporco e polvere.
- La doppia tenuta frontale è efficace nel prevenire l'ingresso di sporco nel carrello.

KK:

Doppia tenuta frontale, tenute interne e lamierino metallico

- Per applicazioni associate a considerevoli quantità di sporco e polvere, a a schegge calde o particelle di sporco aguzze.
- o Il lamierino metallico protegge la tenuta frontale e ne previene il danneggiamento

Disponibilità dei sistemi di tenuta SS, ZZ, DD e KK:

I sistemi di tenuta SS, ZZ, DD e KK sono disponibili per tutte le serie e per tutte le dimensioni. L'unica eccezione è costituita dalle serie MG e MG-O, per cui è disponibile solo il sistema di tenuta standard SS.

23

2.9.2 Sistemi di tenuta SW e ZW per protezione antipolvere ottimale

I sistemi di tenuta SW e ZW consentono alle guide lineari HIWIN di essere utilizzate anche in aree con quantità elevata di sporco. I sistemi di tenuta offrono protezione ottimale contro l'ingresso di sporco, polvere e liquidi. La tenuta frontale è resistente a oli e grassi ed estremamente resistente all'usura.

Proprietà:

- Tenuta frontale a doppio labbro
- Tenuta inferiore ottimizzata.
- o Tenuta superiore addizionale
- Raschiatore in acciaio

SW:

Tenuta frontale a doppio labbro e tenuta superiore aggiuntiva

- Protezione antipolvere ottimale
- O La tenuta superiore aggiuntiva blocca l'ingresso della polvere dall'alto della rotaia.
- O La tenuta inferiore ottimizzata protegge dalla polvere sul fianco della rotaia.

Vantaggi:

- Protezione antipolvere ottimale
- Maggiore durata
- o maggior protezione del lubrificante interno
- Minori costi di manutenzione

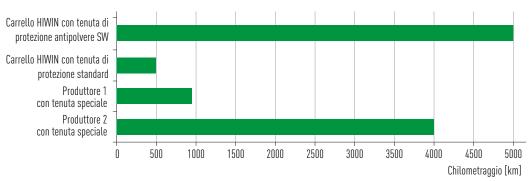
ZW*:

Tenuta frontale a doppio labbro, tenuta inferiore ottimizzata, tenuta superiore aggiuntiva e lamierino metallico.

- Protezione antipolvere ottimale
- O La tenuta superiore aggiuntiva blocca l'ingresso della polvere dall'alto della rotaia.
- La tenuta inferiore ottimizzata protegge dalla polvere sul fianco della rotaia.
- Il raschiatore, inoltre, protegge da particelle e trucioli e previene i danni alla guarnizione stessa.
- * Nota: Disponibile in Germania un lamierino metallico ottimizzato in acciaio inox (contattare HIWIN srl per informazioni)

Test della polvere per i sistemi di tenuta SW e ZW

Accurati test hanno dimostrato che la durata utile dei sistemi di tenuta SW e ZW è di dieci volte più lunga rispetto ai sistemi di tenuta standard,


in caso di elevali livelli di polveri

Sistema di tenuta ZW

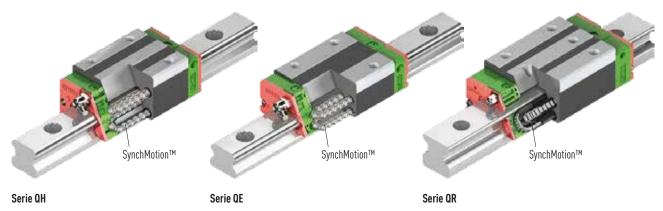
GW-IT-20-06

Test conditions:

- Stanza sigillata in cui si fa circolare polvere di MDF
- \circ v = 1.3 m/s
- Lubrificazione con grasso

Serie	Dimensioni	Dimensioni									
	15	20	25	30	35	45	55	65			
HG	0	• •	• =	• •	• =	• =	0 🗆	0 🗆			
CG	0	0	0	0	0	0					
RG	_	_	_	_	_	0 🗆	0 🗆	0 🗆			

☐ Sistema di tenuta ZW (senza tenuta superiore e tenuta inferiore ottimizzata)


Informazioni Generali

2.10 Tecnologia SynchMotion™

L'innovativa tecnologia SynchMotion™ riduce il contatto tra gli elementi volventi - e con il carrello. Come la gabbia in un classico cuscinetto a sfere, mantiene gli elementi volventi ad una distanza definita l'uno dall'altro, la tecnologia SynchMotion™ svolge e raggiunge il medesimo obiettivo. Viene dunque eliminato l'attrito reciproco, presente nelle guide lineari standard, e vengono ridotte considerevolmente le variazioni alla resistenza all'avanzamento. Non si verificano movimenti incontrollati delle sfere, neanche ad alte velocità. La tecnologia SynchMotion™ migliora inoltre la distribuzione del lubrificante all'interno del carrello a la sua conservazione.

Vantaggi:

- O Miglioramento della fluidità di movimento
- O Maggiori velocità e accelerazioni ammissibili
- O Aumento degli intervalli di lubrificazione
- Maggiore silenziosità
- O Più elevata capacità di carico dinamico

Tabella 2.8 Di	Tabella 2.8 Disponibilità della tecnologia SynchMotion™ per guide lineari HIWIN.									
Serie	Taglia									
	15	20	21	25	27	30	35	45	55	65
QH	•	•	-	•	-	•	•	•	_	_
QE	•	•	-	•	-	•	•	-	-	_
QW	_	-	•	_	•	-	•	-	_	_
QR	_	-	-	•	-	•	•	•	-	_

I carrelli con tecnologia SynchMotion™ hanno dimensioni identiche, sono compatibili con i carrelli HG, EG, WE e RG, si adattano alla rotaia standard, sono pertanto intercambiabili al 100% ai carrelli a pieno riempimento.

2.11 Guide lineari per alta temperatura

I carrelli ad alta temperatura hanno testate di ricircolo realizzate in acciaio per poter lavorare oltre gli 80°C. Le tenute frontali standard sono sostituite con tenute termoresistenti, e al posto dei tappi in plastica, la rotaia è fornita con tappi in ottone.

Proprietà speciali:

- o Elevata resistenza alla temperatura
- O Temperatura di lavoro fino a 150 °C.
- o Picchi di temperatura fino a 180 °C.

Aree di utilizzo:

- O Dispositivi per trattamenti termici
- o Dispositivi di saldatura
- O Dispositivi per la produzione del vetro
- O Dispositivi per l'uso sotto vuoto.

Tabella 2.9 Serie con testata di ricircolo in acciaio						
Serie	Taglia					
HG	15, 20, 25, 30, 35, 45, 55, 65					
EG	20, 25					
MGN	7, 9, 12, 15					
MGW	12, 15					

Codice ordine: Aggiungere il codice identificativo "/SE" al codice ordine per l'opzione con testata in acciaio. Fare riferimento alla struttura dei codici d'ordine nel capitolo di ciascuna serie.HG: da Pagina 29, EG da Pagina 47, MG: da Pagina 90

Esempio di ordine:	HG	W	25	С	С	ZA	Н	22	SE
--------------------	----	---	----	---	---	----	---	----	----

GW-IT-20-06 25

Informazioni Generali

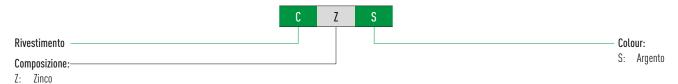
2.12 Trattamenti anticorrosione HIWIN per guide lineari

2.12.1 Rivestimento HIWIN HICOAT CZS*

* Nota: trattamento fornibile da HIWIN Germania, per informazioni contattare HIWIN srl.

2.12.1.1 Caratteristiche

HICOAT CZS è un rivestimento in zinco sottilissimo che offre una buona protezione anticorrosione, compreso su raggi e smussi.Le parti più piccole non rivestite sono protette dalla protezione catodica anticorrosione.Rispetto ai pezzi non rivestiti, questo porta a durate utili significativamente superiori.Il rivestimento CZS è disponibile per le serie HG, EG e CG.


Caratteristiche specifiche

- Ottima protezione anticorrosione
- Privo di Cr(VI)
- o Protezione delle estremità delle rotaie tramite zinco a spruzzo (per i dettagli leggi sotto)
- Le possibili interazioni tra rivestimento, medio ambiente e lubrificante devono essere testate caso per caso

Dati tecnici

- O Prova in nebbia salina secondo DIN EN ISO 9227 (con rotaia non caricata):300 ore
- O Lunghezza massima della rotaia (pezzo unico): 4.0 m.

2.12.1.2 Codice d'ordine per rivestimenti in CZS

2.12.1.3 Test di corrosione

In questo test, profili rivestiti in CZS sono stati confrontati con un profilo non rivestito.

Rotaia nuova con rivestimento CZS

Rotaia con rivestimento CZS dopo 6 mesi di stoccaggio all'aperto

Rotaia con rivestimento CZS dopo 99 ore di prova in nebbia salina (ai sensi DIN EN ISO 9227)

Rotaia non rivestita - dopo 4 ore di prova in nebbia salina

2.12.2 Trattamenti anticorrosione HIWIN srl

2.12.2.1 Fosfatazione al manganese

Caratteristiche

Rivestimento sottile al fosfato di manganese, ottimale come protezione base dall'acqua o da ambienti mediamente aggressivi ed in presenza di carichi contenuti.

Trattamento applicabile sulle rotaie. Informazioni tecniche: vedi tabella

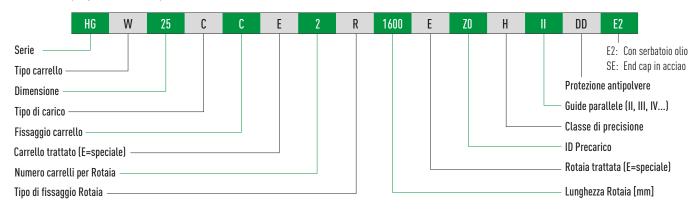
Grazie all'apporto di un sottile strato a base di nichel, questo rivestimento è adatto per la protezione dall'acqua e ambienti mediamente aggressivi. La durezza superficiale superiore rende il Nyploy adatto ad applicazioni con carichi medi/alti e per il settore alimentare. Possibilità di lucidare le piste di scorrimento delle sfere per maggiore scorrevolezza delle guide. Applicabile su rotaie.

Informazioni tecniche: vedi tabella

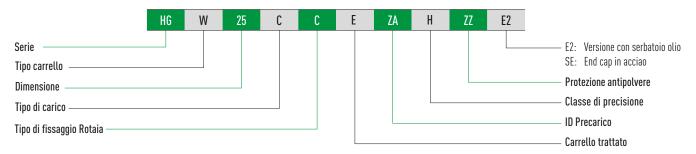
Con un rivestimento ad altissima concentrazione di cromo puro, questo trattamento offre una buona protezione dalla corrosione e, grazie all'elevatissima durezza superficiale, un'ottima resistenza all'usura rendendo possibile l'impiego di questo trattamento anche in applicazioni con alti carichi. La sua elevata proprietà mordente rende l'Armoloy idoneo anche nel settore alimentare. Applicabile su rotaie e carrelli.

Informazioni tecniche: vedi tabella

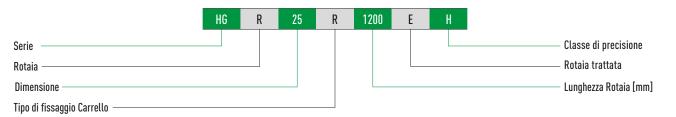
Tabella 3.0 Infor	abella 3.0 Informazioni Tecniche									
	Materiale apportato	Colore	Spessore	Durezza superficiale	Grado protezione	L. max rotaia	Industria alimentare			
Fosfatazione	Fosfato manganese	Nero opaco	3 µm	-	96 h in nebbia salina ¹⁾	1560 mm	×			
Niploy	88% Nichel 10% Fosforo	Argentato	5-10 µm controllabile	550-1000 HV	-	4000 mm	Ø			
Armoloy	98% Cromo puro	Argento satinato	2-12 μm controllabile	1200-1300 HV	96 h in nebbia salina ¹⁾	4000 mm	Ø			


^{1]} secondo DIN EN ISO 9227; test applicato su rotaia scarica. La normativa prevede una durata minima di 24h per la fosfatazione.

GW-IT-20-06 27


Informazioni generali, serie HG/QH

2.12.3 Codice ordine per guide lineari rivestite


Codice ordine per guide lineari (completamente assemblate)

Codice d'ordine per carrello (non montato)

Codice d'ordine per rotaia (non montata)

E= per rotaie Armoloy

E= fosfatazione

E= niploy

Specificare all'ordine il tipo di trattamento richiesto

3. Guide lineari

3.1 Serie HG e QH

3.1.1 Caratteristiche delle guide lineari serie HG e QH

Le guide lineari HIWIN del tipo HG a quattro ricircoli presentano una grande capacità di carico e ottima rigidezza. Grazie alla disposizione a 45° dei quattro ricircoli, le guide HG hanno la medesima capacità di carico in tutte le direzioni. Altre caratteristiche della serie HG sono le ridotte forze di attrito e un'elevata efficienza. Gli elementi di trattenuta delle sfere ne impediscono la caduta durante lo smontaggio del carrello. I modelli della serie QH con tecnologia SynchMotion™ offrono tutti i vantaggi della serie HG standard. Inoltre, grazie al movimento controllato delle sfere distanziate dalla gabbia, sono caratterizzate da un miglioramento della scorrevolezza, intesa come linearità e fluidità di movimento, dà velocità maggiori, da intervalli di lubrificazione più lunghi ed una minore rumorosità. Poiché le dimensioni di montaggio dei carrelli QH sono identiche a quelle dei carrelli HG, possono essere montati anche sulla rotaia HGR standard e quindi sono esattamente intercambiabili.

3.1.2 Struttura della serie HG/QH

- O Guida a 4 ricircoli di sfere
- Angolo di contatto 45°
- O Gli elementi di trattenuta delle sfere ne impediscono la caduta durante lo smontaggio del carrello
- O Sono disponibili diversi tipi di tenute in funzione del campo di applicazione
- o 6 possibili posizioni di collegamento dell'ingrassatore o dell'adattatore per lubrificazione
- Tecnologia SynchMotion™ (serie QH)

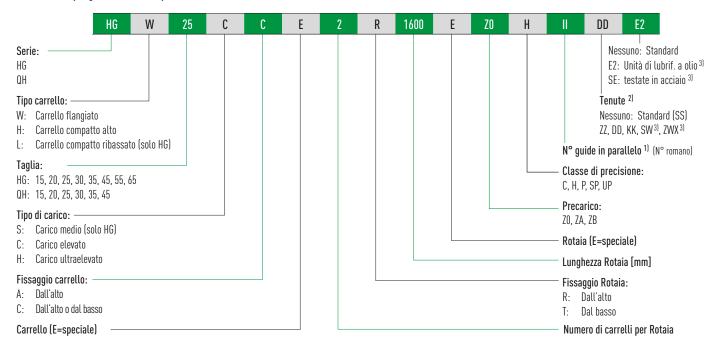
Struttura della serie HG

Vantaggi:

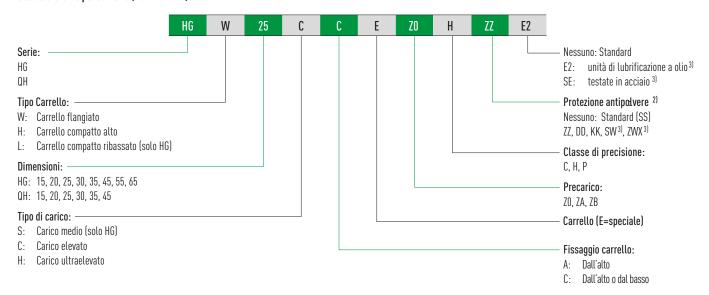
- o Esente da giochi
- Intercambiabile
- Elevata precisione
- O Elevate capacità di carico in tutte le direzioni
- Alta efficienza e basso attrito anche in caso di precarico grazie al contatto ad arco circolare delle sfere sulla piste di rotolamento

Struttura della serie QH

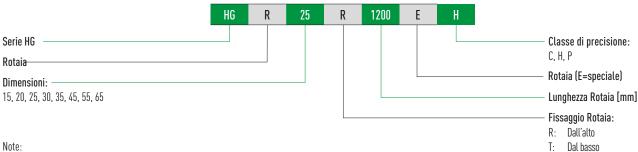
Ulteriori vantaggi della serie QH:


- Miglioramento della scorrevolezza
- Ottimizzato per velocità e accelerazioni superiori
- o Intervalli di lubrificazione più lunghi
- Basso livello di rumorosità
- Maggiori capacità di carico dinamico

3.1.3 Codici d'ordine per le serie HG/QH


Le guide lineari HG/QH possono essere gestite assemblate o intercambiabili. Le dimensioni di entrambi i modelli sono identiche. La differenza fondamentale risiede nel fatto che nel caso dei modelli intercambiabili i carrelli e le rotaie possono essere sostituiti e gestiti liberamente. Carrelli e rotaie possono essere ordinati separatamente e montati dal cliente. La categoria di precisione si estende fino alla P.

Serie HG/QH


Codice ordine per guide lineari (completamente assemblate)

Codice d'ordine per carrello (non montato)

Codice d'ordine per rotaia (non montata)

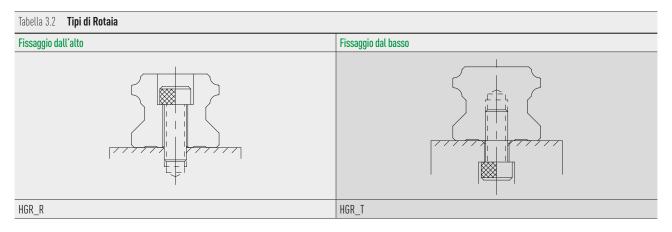
Note:

30

¹⁾ Il numero romano indica il numero di guide di cui è previsto il parallelo e significa che un elemento dell'articolo sopra descritto si riferisce numericamente ad una guida.

²⁾ Panoramica dei singoli sistemi di tenuta a pagina 22

³⁾ Non disponibile per QH

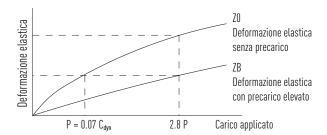


3.1.4 Tipi di Carrello HIWIN offre carrelli compatti e flangiati per ciascun modello di guida.

Tabella 3.1 Tipi di carrello					
Tipo	Serie/ dimensioni	Struttura	Altezza [mm]	Lunghezza Rotaia [mm]	Applicazioni caratteristiche
Carrello compatto alto	HGH-CA HGH-HA		28 – 90	100 – 4,000	 Centri di lavoro Torni NC Rettificatrici Frese di precisione Macchine per taglio ad alta precisione
Carrello compatto ribassato	HGL-CA HGL-HA		24 – 70		Automazione Tecnologie di trasporto Tecnologie di misurazione Macchine e apparecchi che necessitano di alta precisione
Carrello FlangiAT	HGW-CC HGW-HC		24 – 90		nel posizionamento

3.1.5 Tipi di Rotaia

Oltre alle rotaie con sistema di fissaggio standard dall'alto, HIWIN fornisce anche rotaie con sistema di fissaggio dal basso

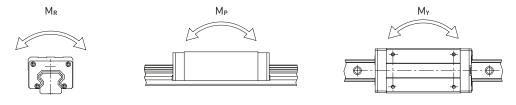

GW-IT-20-06 31

Serie HG/QH

3.1.6 Precarico

Definizione

E' possibile applicare un precarico ad ogni tipo di guida in base alle dimensioni delle sfere. La curva mostra che la rigidità viene raddoppiata quando si applica un precarico. La serie HG/ΩH offre tre classi di precarico standard, per varie applicazioni e condizioni.



ID Precarico

ID .	ID Precarico Precarico		Utilizzo	Esempi di utilizzo		
ZO	Precarico leggero	0 - 0.02 C _{dyn}	Direzione di carico costante, urti di ridotta entità, precisione contenuta.	Tecnica di trasporto, Confezionatrici automatiche Asse X-Y per macchine industriali Saldatrici		
ZA	Precarico medio	0.05 – 0.07 C _{dyn}	Elevate precisioni richieste	Macchine utensili Assi Z in macchine industriali Macchine per elettroerosione Torni NC Banchi X-Y di precisione Tecnologia per la misurazione		
ZB	Precarico forte	above 0.1 C _{dyn}	Elevata rigidezza strutturale richiesta Presenta di urti e vibrazioni	Macchine utensili Rettificatrici Torni C Frese orizzontali e verticali Asse Z in macchine utensili Macchine da taglio ad elevate prestazioni		

3.1.7 Capacità di carico e momenti

Tabella 3.4 C	apacità di carico e momei	nti delle serie HG/QH						
Serie/	Capacità di Carico Dinamico	Capacità di Carico Statico	Momento D	namico [Nm]		Momento S	Statico [Nm]	
Taglia	C _{dyn} [N] 1)	C ₀ [N]	M_R	M _P	Мү	Mor	M _{OP}	M _{OY}
HG_15C	11,380	16,970	76	67	67	120	100	100
QH_15C	13,880	14,360	90	84	84	100	80	80
HG_20S ^{2]}	12,190	16,110	99	61	61	130	80	80
HG_20C	17,750	27,760	178	126	126	270	200	200
QH_20C	23,080	25,630	231	171	171	260	190	190
HG_20H	21,180	35,900	208	203	203	350	350	350
QH_20H	27,530	31,670	268	230	230	310	270	270
HG_25S ^{2]}	24,290	18,650	239	123	123	310	160	160
HG_25C	26,480	36,490	301	240	240	420	330	330
QH_25C	31,780	33,680	361	294	294	390	310	310
HG_25H	32,750	49,440	374	379	379	560	570	570
QH_25H	39,300	43,620	451	410	410	500	450	450
HG_30C	38,740	52,190	494	396	396	660	530	530
QH_30C	46,490	48,170	588	491	491	600	500	500
HG_30H	47,270	69,160	600	630	630	880	920	920
QH_30H	56,720	65,090	722	623	623	830	890	890
HG_35C	49,520	69,160	832	577	577	1,160	810	810
QH_35C	60,520	63,840	1,019	720	720	1,070	760	760
HG_35H	60,210	91,630	1,011	918	918	1,540	1,400	1,400
QH_35H	73,590	86,240	1,233	1,135	1,135	1,450	1,330	1,330
HG_45C	77,570	102,710	1,497	1,169	1,169	1,980	1,550	1,550
QH_45C	89,210	94,810	1,723	1,295	1,295	1,830	1,380	1,380
HG_45H	94,540	136,460	1,825	1,857	1,857	2,630	2,680	2,680
QH_45H	108,720	128,430	2,097	2,041	2,041	2,470	2,410	2,410
HG_55C	114,440	148,330	2,843	2,039	2,039	3,690	2,640	2,640
HG_55H	139,350	196,200	3,464	3,242	3,242	4,880	4,570	4,570
HG_65C	163,630	215,330	5,049	3,245	3,245	6,650	4,270	4,270
HG_65H	208,360	303,130	6,449	5,068	5,068	9,380	7,380	7,380

¹⁾ Capacità di carico dinamica per una distanza percorsa di 50.000 m 2) Disponibile HIWIN Germania. Per info contattare HIWIN srl

GW-IT-20-06 33

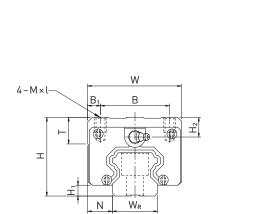
Serie HG/QH

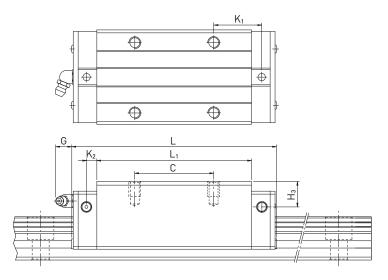
3.1.8 RigiditàLa rigidità dipende dal precarico. Con la formula F 3.1 è possibile determinare la deformazione a seconda della rigidità.

F 3.1

$$\delta = \frac{P}{k}$$

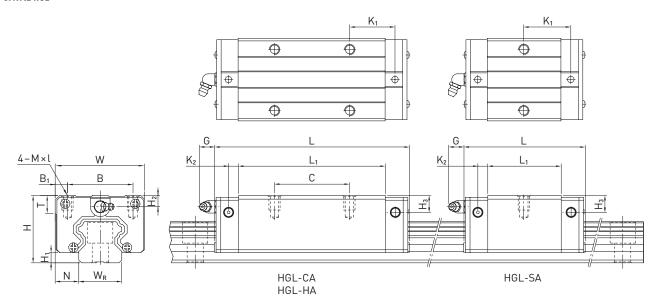
δ Deformazione [μm] P Carico di servizio [N]


k Rigidità [N/μm]


Classe di carico	Serie/	Rigidità in funzione	del precarico	
	Taglia	ZO	ZA	ZB
Carico medio	HG_20S	130	170	190
Carico pesante	HG_15C	200	260	290
	QH_15C	180	230	260
	HG_20C	250	320	360
	QH_20C	230	290	320
	HG_25C	300	390	440
	QH_25C	270	350	400
	HG_30C	370	480	550
	QH_30C	330	430	500
	HG_35C	410	530	610
	QH_35C	370	480	550
	HG_45C	510	660	750
	QH_45C	460	590	680
	HG_55C	620	800	910
	HG_65C	760	980	1,120
Carico super pesante	HG_20H	310	400	460
	QH_20H	280	360	410
	HG_25H	390	510	580
	QH_25H	350	460	520
	HG_30H	480	620	710
	QH_30H	430	560	640
	HG_35H	530	690	790
	QH_35H	480	620	710
	HG_45H	650	850	970
	QH_45H	590	770	870
	HG_55H	790	1,030	1,180
	HG_65H	1,030	1,330	1,520

3.1.9 Dimensioni dei carrelli HG/QH

3.1.9.1 HGH/QHH



Serie/ Taglia		nsioni d taggio [n		Dime	Dimensioni del carrello [mm]											Coefficienti di carico [N]		Peso [kg]	
	Н	H ₁	N	W	В	B ₁	C	L ₁	L	K ₁	K ₂	G	M×l	T	H ₂	H ₃	C _{dyn}	C ₀	
HGH15CA	28	4.3	9.5	34	26	4.0	26	39.4	61.4	10.00	4.85	5.3	M4 × 5	6.0	7.95	7.7	11,380	16,970	0.18
QHH15CA	28	4.0	9.5	34	26	4.0	26	39.4	61.4	10.00	5.00	5.3	M4 × 5	6.0	7.95	8.2	13,880	14,360	0.18
HGH20CA	30	4.6	12.0	44	32	6.0	36	50.5	77.5	12.25	6.00	12.0	M5 × 6	8.0	6.00	6.0	17,750	27,760	0.30
HGH20HA							50	65.2	92.2	12.60							21,180	35,900	0.39
QHH20CA	30	4.6	12.0	44	32	6.0	36	50.5	76.7	11.75	6.00	12.0	M5 × 6	8.0	6.00	6.0	23,080	25,630	0.29
QHH20HA							50	65.2	91.4	12.10							27,530	31,670	0.38
HGH25CA	40	5.5	12.5	48	35	6.5	35	58.0	84.0	15.70	6.00	12.0	M6 × 8	8.0	10.00	9.0	26,480	36,490	0.51
HGH25HA							50	78.6	104.6	18.50							32,750	49,440	0.69
QHH25CA	40	5.5	12.5	48	35	6.5	35	58.0	83.4	15.70	6.00	12.0	M6 × 8	8.0	10.00	9.0	31,780	33,680	0.50
QHH25HA							50	78.6	104.0	18.50							39,300	43,620	0.68
HGH30CA	45	6.0	16.0	60	40	10.0	40	70.0	97.4	20.25	6.00	12.0	M8 × 10	8.5	9.50	13.8	38,740	52,190	0.88
HGH30HA							60	93.0	120.4	21.75							47,270	69,160	1.16
QHH30CA	45	6.0	16.0	60	40	10.0	40	70.0	97.4	19.50	6.25	12.0	M8 × 10	8.5	9.50	9.0	46,490	48,170	0.87
QHH30HA							60	93.0	120.4	21.75							56,720	65,090	1.15
HGH35CA	55	7.5	18.0	70	50	10.0	50	80.0	112.4	20.60	7.00	12.0	M8 × 12	10.2	16.00	19.6	49,520	69,160	1.45
HGH35HA							72	105.8	138.2	22.50							60,210	91,630	1.92
QHH35CA	55	7.5	18.0	70	50	10.0	50	80.0	113.6	19.00	7.50	12.0	M8 × 12	10.2	15.50	13.5	60,520	63,840	1.44
QHH35HA							72	105.8	139.4	20.90							73,590	86,240	1.90
HGH45CA	70	9.5	20.5	86	60	13.0	60	97.0	139.4	23.00	10.00	12.9	M10 × 17	16.0	18.50	30.5	77,570	102,710	2.73
HGH45HA							80	128.8	171.2	28.90							94,540	136,460	3.61
QHH45CA	70	9.2	20.5	86	60	13.0	60	97.0	139.4	23.00	10.00	12.9	M10 × 17	16.0	18.50	20.0	89,210	94,810	2.72
QHH45HA							80	128.8	171.2	29.09							108,720	128,430	3.59
HGH55CA	80	13.0	23.5	100	75	12.5	75	117.7	166.7	27.35	11.00	12.9	M12 × 18	17.5	22.00	29.0	114,440	148,330	4.17
HGH55HA							95	155.8	204.8	36.40							139,350	196,200	5.49
HGH65CA	90	15.0	31.5	126	76	25.0	70	144.2	200.2	43.10	14.00	12.9	M16 × 20	25.0	15.00	15.0	163,630	215,330	7.00
HGH65HA							120	203.6	259.6	47.80							208,360	303,130	9.82

GW-IT-20-06 35

3.1.9.2 HGL

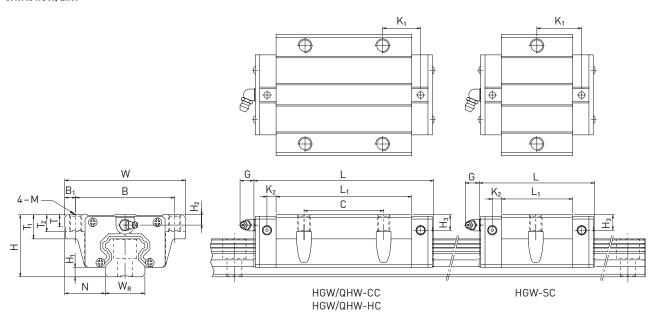


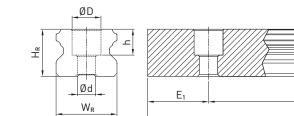
Tabella 3.7 Dimensioni del carrello																			
Serie/ Taglia	Dimensioni di montaggio [mm] Dimensioni del carrello [mm]												Coefficie di carico	Peso [kg]					
	Н	H ₁	N	W	В	B ₁	C	L ₁	L	K ₁	K ₂	G	M×l	T	H ₂	H ₃	C _{dyn}	C ₀	
HGL15CA	24	4.3	9.5	34	26	4.0	26	39.4	61.4	10.00	4.85	5.3	M4 × 4	6.0	3.95	3.7	11,380	16,970	0.14
HGL25SA 3)	36	5.5	12.5	48	35	6.5	_	38.2	64.2	23.20	6.00	12.0	M6 × 6	8.0	6.00	5.0	18,650	24,290	0.32
HGL25CA							35	58.0	84.0	15.70							26,480	36,490	0.42
HGL25HA							50	78.6	104.6	18.50							32,750	49,440	0.57
HGL30CA	42	6.0	16.0	60	40	10.0	40	70.0	97.4 ¹⁾	20.25	6.00	12.0	M8 × 10	8.5	6.50	10.8	38,740	52,190	0.78
HGL30HA							60	93.0	120.42)	21.75							47,270	69,160	1.03
HGL35CA	48	7.5	18.0	70	50	10.0	50	80.0	112.4	20.60	7.00	12.0	M8 × 12	10.2	9.00	12.6	49,520	69,160	1.14
HGL35HA							72	105.8	138.2	22.50							60,210	91,630	1.52
HGL45CA	60	9.5	20.5	86	60	13.0	60	97.0	139.4	23.00	10.00	12.9	M10 × 17	16.0	8.50	20.5	77,570	102,710	2.08
HGL45HA							80	128.8	171.2	28.90							94,540	136,460	2.75
HGL55CA	70	13.0	23.5	100	75	12.5	75	117.7	166.7	27.35	11.00	12.9	M12 × 18	17.5	12.00	19.0	114,440	148,330	3.25
HGL55HA							95	155.8	204.8	36.40							139,350	196,200	4.27

^{1) 98.8} per la versione SE; 2) 121.8 per la versione SE 3) Disponibile HIWIN Germania. Per info contattare HIWIN srl Per le dimensioni della rotaia, s.v Pagina 38, per raccordi standard e optional di lubrificazione s.v. Pagina 126

3.1.9.3 HGW/QHW

Serie/ Taglia	1	nsioni d aggio [n		Dim	ension	i del ca	arrello	[mm]											Coefficion di carico		Peso [kg]
	Н	H ₁	N	W	В	B ₁	С	L ₁	L	K ₁	K ₂	М	G	T	T ₁	T ₂	H ₂	H ₃	C _{dyn}	C ₀	
HGW15CC	24	4.3	16.0	47	38	4.5	30	39.4	61.4	8.00	4.85	M5	5.3	6.0	8.9	7.0	3.95	3.7	11,380	16,970	0.17
QHW15CC	24	4.0	16.0	47	38	4.5	30	39.4	61.4	8.00	5.00	M5	5.3	6.0	8.9	7.0	3.95	4.2	13,880	14,360	0.17
HGW20SC 3	30	4.6	21.5	63	53	5.0	_	29.5	54.3	19.65	6.00	M6	12.0	8.0	10.0	9.5	6.00	6.0	12,190	16,110	0.28
HGW20CC							40	50.5	77.5	10.25									17,750	27,760	0.40
HGW20HC								65.2	92.2	17.60									21,180	35,900	0.52
QHW20CC	30	4.6	21.5	63	53	5.0	40	50.5	76.7	9.75	6.00	M6	12.0	8.0	10.0	9.5	6.00	6.0	23,080	25,630	0.40
QHW20HC								65.2	91.4	17.10									27,530	31,670	0.52
HGW25SC 3	36	5.5	23.5	70	57	6.5	_	38.2	64.2	23.20	6.00	M8	12.0	8.0	14.0	10.0	6.00	5.0	18,650	24,290	0.42
HGW25CC							45	58.0	84.0	10.70									26,480	36,490	0.59
HGW25HC								78.6	104.6	21.00									32,750	49,440	0.80
QHW25CC	36	5.5	23.5	70	57	6.5	45	58.0	83.4	10.70	6.00	M8	12.0	8.0	14.0	10.0	6.00	5.0	31,780	33,680	0.59
QHW25HC								78.6	104.0	21.00									39,300	43,620	0.80
HGW30CC	42	6.0	31.0	90	72	9.0	52	70.0	97.4 ¹⁾	14.25	6.00	M10	12.0	8.5	16.0	10.0	6.50	10.8	38,740	52,190	1.09
HGW30HC								93.0	120.42)	25.75									47,270	69,160	1.44
QHW30CC	42	6.0	31.0	90	72	9.0	52	70.0	97.4	13.50	6.25	M10	12.0	8.5	16.0	10.0	6.50	6.0	46,490	48,170	1.09
QHW30HC		_						93.0	120.4	25.75									56,720	65,090	1.44
HGW35CC	48	7.5	33.0	100	82	9.0	62	80.0	112.4	14.60	7.00	M10	12.0	10.1	18.0	13.0	9.00	12.6	49,520	69,160	1.56
HGW35HC								105.8	138.2	27.50									60,210	91,630	2.06
QHW35CC	48	7.5	33.0	100	82	9.0	62	80.0	113.6	13.00	7.50	M10	12.0	10.1	18.0	13.0	8.50	6.5	60,520	63,840	1.56
QHW35HC	16		05.	4	4.5.5	40.5		105.8	139.4	25.90	40.51		40.5	45.	00 -	45.		00 -	73,590	86,240	2.06
HGW45CC	60	9.5	37.5	120	100	10.0	80	97.0	139.4	13.00	10.00	M12	12.9	15.1	22.0	15.0	8.50	20.5	77,570	102,710	2.79
HGW45HC	/.0	0.0	07.5	100	100	10.0	0.0	128.8	171.2	28.90	10.00	1440	10.0	15.4	00.0	15.0	0.50	10.0	94,540	136,460	3.69
QHW45CC	60	9.2	37.5	120	100	10.0	80	97.0	139.4	13.00	10.00	M12	12.9	15.1	22.0	15.0	8.50	10.0	89,210	94,810	2.79
QHW45HC	70	10.0	/0.5	1/0	11/	10.0	0.5	128.8	171.2	28.90	11.00	M1 /	10.0	17.5	0/ 5	17.0	10.00	10.0	108,720	128,430	3.69
HGW55CC	70	13.0	43.5	140	116	12.0	95	117.7	166.7	17.35	11.00	M14	12.9	17.5	26.5	17.0	12.00	19.0	114,440	148,330	4.52
HGW55HC	00	15.0	F0 F	170	1/0	1/0	110	155.8	204.8	36.40	1 / 00	M1/	10.0	OF.	07.5	20.0	15.00	15.0	139,350	196,200	5.96
HGW65CC	90	15.0	53.5	170	142	14.0	110	144.2	200.2	23.10	14.00	M16	12.9	25	37.5	23.0	15.00	15.0	163,630	215,330	9.17
HGW65HC								203.6	259.6	52.80									208,360	303,130	12.89

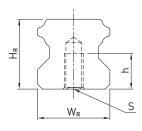
^{1) 98.8} per la versione SE; 2) 121.8 per la versione SE 3) Disponibile HIWIN Germania. Per info contattare HIWIN srl Per le dimensioni della rotaia, s.v Pagina 38, per raccordi standard e optional di lubrificazione s.v. Pagina 126


GW-IT-20-06

Serie HG/QH

3.1.10 Dimensioni della rotaia HG

La rotaia HG viene utilizzata sia per i carrelli HG che per i carrelli QH


3.1.10.1 Dimensioni HGR_R

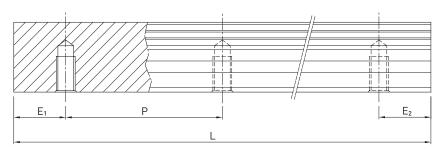


Tabella 3.9 D	imensioni della rotai	a HGR_	R									
Serie/	Vite di montaggio	Dimer	Dimensioni della rotaia [mm]					Lunghezza Max.	Lunghezza Max.	E _{1/2} min	E _{1/2} max	Peso
Taglia	per rotaia [mm]	W_R	H _R	D	h	d	Р	[mm]	$E_1 = E_2 [mm]$	[mm]	[mm]	[kg/m]
HGR15R	M4 × 16	15	15.0	7.5	5.3	4.5	60	4,000	3,900	6	54	1.45
HGR20R	M5 × 16	20	17.5	9.5	8.5	6.0	60	4,000	3,900	7	53	2.21
HGR25R	M6 × 20	23	22.0	11.0	9.0	7.0	60	4,000	3,900	8	52	3.21
HGR30R	M8 × 25	28	26.0	14.0	12.0	9.0	80	4,000	3,920	9	71	4.47
HGR35R	M8 × 25	34	29.0	14.0	12.0	9.0	80	4,000	3,920	9	71	6.30
HGR45R	M12 × 35	45	38.0	20.0	17.0	14.0	105	4,000	3,885	12	93	10.41
HGR55R	M14 × 45	53	44.0	23.0	20.0	16.0	120	4,000/5,600	3,840/5,400	14	106	15.08
HGR65R	M16 × 50	63	53.0	26.0	22.0	18.0	150	4,000/5,600	3,750/5,400	15	135	21.18

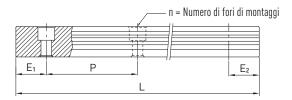
Ρ

3.1.10.2 Dimensioni HGR_T

 E_2

Tabella 3.10	Tabella 3.10 Dimensioni della rotaia HGR_T											
Serie/	Dimensio	ni della rot	aia [mm]			Lunghezza Max.	Lunghezza Max.	E _{1/2} min	E _{1/2} max	Peso		
Taglia	W _R	H _R	S	h	P	[mm] E ₁	$E_1 = E_2 [mm]$	[mm]	[mm]	[kg/m]		
HGR15T	15	15.0	M5	8	60	4,000	3,900	6	54	1.48		
HGR20T	20	17.5	M6	10	60	4,000	3,900	7	53	2.29		
HGR25T	23	22.0	M6	12	60	4,000	3,900	8	52	3.35		
HGR30T	28	26.0	M8	15	80	4,000	3,920	9	71	4.67		
HGR35T	34	29.0	M8	17	80	4,000	3,920	9	71	6.51		
HGR45T	45	38.0	M12	24	105	4,000	3,885	12	93	10.87		
HGR55T	53	44.0	M14	24	120	4,000	3,840	14	106	15.67		
HGR65T	63	53.0	M20 ¹⁾	30	150	4,000	3,750	15	135	21.73		

^{1]} Deviazione da DIN 645


Nota:

- 1. Senza indicazione della dimensione $E_{1/2}$, considerando $E_{1/2}$ min è possibile determinare il numero massimo di fori di montaggio
- 2. Le rotaie sono tagliate alla lunghezza desiderata. Senza alcuna indicazione della dimensione E_{1/2} saranno eseguite simmetriche.

3.1.10.3 Calcolo della lunghezza delle rotaie

HIWIN offre rotaie con lunghezze personalizzate. Per evitare che l'ultima parte della rotaia diventi instabile, il valore di E non deve superare la metà del passo (P). Contemporaneamente, il valore ${\rm E}_{1/2}$ deve essere compreso tra ${\rm E}_{1/2}$ min e ${\rm E}_{1/2}$ max in modo da non andare in interferenza con il foro di montaggio.

F 3.2
$$L = (n-1) \times P + E_1 + E_2$$

- L Lunghezza totale della rotaia[mm]
- n Numero di fori di montaggio
- P Distanza tra due fori [mm]
- E_{1/2} Distanza tra il centro dell'ultimo foro di montaggio e l'estremità della rotaia [mm]

3.1.10.4 Coppie di serraggio delle viti di ancoraggio

Il serraggio insufficiente delle viti di fissaggio compromette gravemente la precisione della guida lineare; di conseguenza, raccomandiamo le coppie di serraggio seguenti a seconda delle dimensioni delle viti.

Table 3.11 Coppie di s	Table 3.11 Coppie di serraggio delle viti di fissaggio ai sensi ISO 4762-12.9									
Serie/Taglia	Dimensioni Vite	Coppia [Nm]	Serie/Taglia	Dimensioni Vite	Coppia [Nm]					
HG/QH_15	M4 × 16	4	HG/QH_35	M8 × 25	30					
HG/QH_20	M5 × 16	9	HG/QH_35	M10	70					
HG/QH_25	M6 × 20	13	HG/QH_45	M12 × 35	120					
HG/QH_30	M8 × 25	30	HG_55	M14 × 45	160					
HG/QH_30	M10	70	HG_65	M16 × 50	200					

3.1.10.5 Tappi per i fori di montaggio delle rotaie

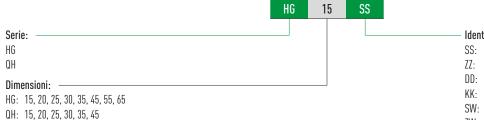
I tappi servono a impedire che trucioli e sporco entrino nei fori di montaggio. I tappi standard in plastica sono forniti unitamente alle singole rotaie. Ulteriori tappi opzionali devono essere ordinati separatamente.

Tabella 3.12 Tappi per	i fori di montaggio delle	rotaie						
Rotaia	Vite	Numero Ar	ticolo			Ø D [mm]	Altezza H [mm]	
		Plastica		Ottone		Acciaio		
		Gmbh	TW	Gmbh	TW			
HGR15R	M4	5-002218	950002C1	5-001344	95000FA1	_	7.5	1.2
HGR20R	M5	5-002220	950003D2	5-001350	95000GA1	5-001352	9.5	2.5
HGR25R	M6	5-002221	950004D2	5-001355	95000HA1	5-001357	11.0	2.8
HGR30R	M8	5-002222	950005D2	5-001360	95000IA1	5-001362	14.0	3.5
HGR35R	M8	5-002222	950005D2	5-001360	95000IA1	5-001362	14.0	3.5
HGR45R	M12	5-002223	950007D2	5-001324	95000JA1	5-001327	20.0	4.0
HGR55R	M14	5-002224	950008C2	5-001330	95000KA1	5-001332	23.0	4.0
HGR65R	M16	5-002225	950009D1	5-001335	95000LA1	5-001337	26.0	4.0

Serie HG/QH

3.1.11 Sistemi di tenuta

Per i carrelli HIWIN sono disponibili diversi sistemi di tenuta. Una panoramica è disponibile anche a pagina 22. Nella tabella seguente è riportata la lunghezza complessiva dei carrelli con i diversi sistemi di tenuta. Sono disponibili sistemi di tenuta per queste grandezze


Serie/	Lunghezza Tot	ale L				
Taglia	SS	DD	ZZ	KK	SW	ZW
HG_15C	61.4	68.0	69.0	75.6	63.2	_
QH_15C	61.4	68.0	68.4	75.0	-	_
HG_20S 1)	56.5	59.5	57.5	62.5	57.5	61.3
HG_20C	77.5	82.5	82.5	87.5	78.5	82.3
QH_20C	76.7	81.7	81.9	86.9	-	-
HG_20H	92.2	97.5	97.2	102.2	93.2	97.0
QH_20H	91.4	96.4	96.6	101.6	-	-
HG_25C	84.0	89.0	89.0	94.0	85.0	91.8
QH_25C	83.4	88.4	89.4	94.4	-	_
HG_25H	104.6	109.6	109.6	114.6	105.6	112.4
QH_25H	104.4	109.0	110.0	115.0	-	_
HG_30C	97.4	104.8	105.4	112.8	99.0	105.8
QH_30C	97.4	104.8	104.8	112.2	-	_
HG_30H	120.4	127.8	128.4	135.8	122.0	128.8
QH_30H	120.4	127.8	127.8	135.2	_	_
HG_35C	112.4	119.8	120.4	127.8	115.2	122.4
QH_35C	113.6	118.6	119.0	124.0	-	_
HG_35H	138.2	145.6	146.2	153.6	141.0	148.2
QH_35H	139.4	144.4	144.8	149.8	-	_
HG_45C	139.4	149.4	150.0	160.0	140.0	144.8
QH_45C	139.4	146.6	147.2	154.4	_	_
HG_45H	171.2	181.2	181.8	191.8	171.8	176.6
QH_45H	171.2	178.4	179.0	186.2	_	_
HG_55C	166.7	177.1	177.1	187.5	163.7	172.9
HG_55H	204.8	215.2	215.2	225.5	201.8	211.0
HG_65C	200.2	209.2	208.2	217.2	196.2	203.4
HG_65H	259.6	268.6	267.6	276.6	255.6	262.8

Unità: mm 1) Disponibile HIWIN Germania. Per info contattare HIWIN srl

3.1.11.1 Codifica dei set di tenute

set di tenute sono sempre forniti completi di viti per il montaggio e includono i pezzi necessari adeguati oltre alla tenuta standard.

3.1.12 Attrito

La tabella riporta la resistenza massima all'avanzamento delle singole tenute frontali. A seconda della classificazione della guarnizione (SS, DD, ZZ, KK) sarà necessario moltiplicare in modo corrispondente il valore. I valori indicati si intendono validi per quanto riguarda carrelli su rotaie senza trattamento. Su rotaie con trattamento si vengono a creare forze di attrito più elevate.

- Identificativo protezione antipolvere:

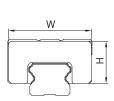
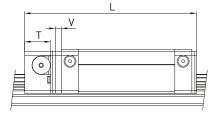

- SS: Tenuta standard
- ZZ: Tenuta frontale con raschiatore
- DD: Doppia tenuta frontale
- KK: Doppia tenuta frontale con lamierino metallico
- SW: Tenuta frontale con doppio labbro
- ZW: Tenuta frontale con doppio labbro
 - e lamierino metallico

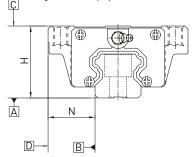
Tabella 3.14 Resistenza all'avar	Tabella 3.14 Resistenza all'avanzamento delle tenute frontali standard								
Serie/Taglia	Attrito [N]	Serie/Taglia	Attrito [N]						
HG/QH_15	1.2	HG_45	3.9						
HG/QH_20	1.6	QH_45	5.3						
HG/QH_25	2.0	HG_55	4.7						
HG/QH_30	2.7	HG_65	5.8						
HG/OH 35	3.1								

Serie HG/QH

3.1.13 Unità di lubrificazione E2

Per i dettagli dell'unità di lubrificazione si rimanda alle informazioni generali nella sezione dedicata "2.6.3 Unità di lubrificazione a olio E2" a Pagina 15.




Tabella 3.15 Dimensioni del carrello con unità di lubrificazione E2 Serie/ Taglia Dimensioni del carrello [mm] Quantità olio [cm³] W Н ٧ L_{SS} 1) $L_{ZZ}^{1)}$ $L_{DD}^{1)}$ $L_{KK}^{1)}$ **HG_15C** 32.4 19.5 12.5 80.5 82.0 1.6 3.0 75.4 87.1 **HG_20S** 43.0 24.4 13.5 3.5 70.9 73.0 75.0 78.0 3.9 **HG_20C** 43.0 24.4 13.5 3.5 93.5 95.6 97.5 100.6 3.9 HG_20H 43.0 24.4 13.5 3.5 108.2 110.2 112.2 115.2 3.9 **HG_25C** 46.4 29.5 13.5 3.5 100.0 102.0 104.0 107.0 5.1 **HG_25H** 46.4 29.5 13.5 3.5 120.6 122.6 124.6 127.6 5.1 **HG_30C** 58.0 35.0 13.5 3.5 112.9 118.0 119.9 125.0 7.8 HG_30H 58.0 35.0 13.5 3.5 135.9 141.0 142.9 148.0 7.8 9.8 **HG_35C** 68.0 38.5 13.5 3.5 127.9 133.4 135.3 140.8 HG_35H 68.0 38.5 13.5 3.5 153.7 159.2 161.1 166.6 9.8 **HG_45C** 82.0 49.0 16.0 4.5 157.2 162.1 166.1 171.7 18.5 16.0 4.5 189.0 193.9 197.9 203.5 18.5 **HG_45H** 82.0 49.0 **HG_55C** 97.0 55.5 16.0 183.9 189.6 193.8 200.0 25.9 4.5 HG_55H 97.0 16.0 227.7 231.9 25.9 55.5 4.5 222.0 238.1 HG_65C 121.0 69.0 16.0 4.5 219.2 220.7 226.7 229.7 50.8 121.0 69.0 16.0 4.5 280.1 286.1 289.1 50.8 HG_65H 278.6

^{1]} Lunghezza totale in funzione della protezione antipolvere selezionata. SS = protezione antipolvere standard

3.1.14 Tolleranze in funzione della classe di precisione

Le serie HG e QH e sono disponibili in cinque differenti classi di precisione, a seconda del parallelismo tra carrelli e rotaie e della precisione della altezza H e della larghezza N. La scelta è determinata dai requisiti della macchina in cui si applicano le guide lineari. HIWIN srl gestisce nella propria sede fino alle casse P.

3.1.14.1 Parallelismo

Parallelismo tra la superficie di battuta del carrello D e B della rotaia B e parallelismo tra la superficie superiore del carrello C e la superficie d'appoggio della rotaia A.

Lunghezza Rotaia [mm]	Classe di precisione									
	C	Н	Р	SP	UP					
- 100	12	7	3	2	2					
100 - 200	14	9	4	2	2					
200 - 300	15	10	5	3	2					
300 - 500	17	12	6	3	2					
500 - 700	20	13	7	4	2					
700 - 900	22	15	8	5	3					
900 – 1100	24	16	9	6	3					
1100 – 1500	26	18	11	7	4					
1500 – 1900	28	20	13	8	4					
1900 – 2500	31	22	15	10	5					
2500 – 3100	33	25	18	11	6					
3100 – 3600	36	27	20	14	7					
3600 – 4000	37	28	21	15	7					

Serie HG/QH

3.1.14.2 Precisione - altezza e larghezza

Tolleranza dell'altezza H

Massima deviazione assoluta dell'altezza H, misurata tra la superficie superiore del carrello C e la superficie inferiore della rotaia A per qualsiasi posizione del carrello sulla rotaia.

Variazione di altezza H

Massima deviazione relativa dell'altezza H tra due o più carrelli sulla stessa rotaia o su rotaie in parallelo. Misurata nella medesima posizione della rotaia

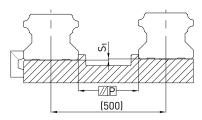
Tolleranza della larghezza N

Massima deviazione assoluta della larghezza N, misurata tra le superfici di battuta del carrello e della rotaia D e B per qualsiasi posizione del carrello sulla rotaia.

Variazione della larghezza N

Massima deviazione relativa della larghezza N tra diversi carrelli sulla stessa rotaia, misurata nella medesima posizione della rotaia.

Tabella 3.17 Tolleranz	e di altezza e larghezza dei m	odelli non intercambiabili			
Serie/Taglia	Classe di precisione	Tolleranza dell'altezza H	Tolleranza larghezza N	Variazione di altezza H	Variazione larghezza N
HG_15, 20	C (Normale)	± 0.1	± 0.1	0.02	0.02
QH_15, 20	H (Elevata)	± 0.03	± 0.03	0.01	0.01
	P (Preciso)	0/- 0.031)	0/-0.031)	0.006	0.006
	SP (Super Preciso)	0/- 0.015	0/- 0.015	0.004	0.004
	UP (Ultra Preciso)	0/- 0.008	0/- 0.008	0.003	0.003
HG_25, 30, 35	C (Normale)	± 0.1	± 0.1	0.02	0.03
QH_25, 30, 35	H (Elevata)	± 0.04	± 0.04	0.015	0.015
	P (Preciso)	0/-0.041	0/-0.041)	0.007	0.007
	SP (Super Preciso)	0/- 0.02	0/-0.02	0.005	0.005
	UP (Ultra Preciso)	0/- 0.01	0/- 0.01	0.003	0.003
HG_45, 55	C (Normale)	± 0.1	± 0.1	0.03	0.03
QH_45	H (Elevata)	± 0.05	± 0.05	0.015	0.02
	P (Preciso)	0/- 0.051)	0/- 0.051)	0.007	0.01
	SP (Super Preciso)	0/- 0.03	0/-0.03	0.005	0.007
	UP (Ultra Preciso)	0/- 0.02	0/-0.02	0.003	0.005
HG_65	C (Normale)	± 0.1	± 0.1	0.03	0.03
	H (Elevata)	± 0.07	± 0.07	0.02	0.025
	P (Preciso)	0/- 0.071	0/- 0.07 1)	0.01	0.015
	SP (Super Preciso)	0/- 0.05	0/- 0.05	0.007	0.01
	UP (Ultra Preciso)	0/- 0.03	0/- 0.03	0.005	0.007


Unità: mm

¹⁾ Guida lineare completamente assemblata

3.1.14.3 Tolleranze ammissibili delle superfici di montaggioPer sfruttare al meglio le elevatissime precisioni, rigidità e durata delle guide HG/QH è necessario rispettare le tolleranze di lavorazione delle superfici di montaggio.

parallelismo della superficie di riferimento (P):

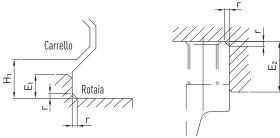

Tabella 3.18 Tolleranza massima di para	Tabella 3.18 Tolleranza massima di parallelismo (P)								
Serie/Taglia	Classe di precarico								
	ZO	ZA	ZB						
HG/QH_15	25	18	-						
HG/QH_20	25	20	18						
HG/QH_25	30	22	20						
HG/QH_30	40	30	27						
HG/QH_35	50	35	30						
HG/QH_45	60	40	35						
HG_55	70	50	45						
HG_65	80	60	55						
Unità: µm									

Tabella 3.19 Tolleranza massima	a della differenza in altezza del	la superficie di riferimento (S ₁)							
Serie/Taglia	Classe di precarico	Classe di precarico							
	ZO	ZA	ZB						
HG/QH_15	130	85	-						
HG/QH_20	130	85	50						
HG/QH_25	130	85	70						
HG/QH_30	170	110	90						
HG/QH_35	210	150	120						
HG/QH_45	250	170	140						
HG_55	300	210	170						
HG_65	350	250	200						
Unità: µm									

GW-IT-20-06 45

Serie HG/QH, serie EG/QE

3.1.15 Altezze delle battute e raggi di raccordo Se le altezze e i raccordi degli spallamenti delle superficie di montaggio non sono corretti, la precisione risulterà diversa da quella prevista e si verificherà un'interferenza con il profilo della rotaia o del carrello. Rispettando le altezze e i raccordi previsti per gli spallamenti è possibile eliminare eventuali errori di installazione.

Tabella 3.20 Altezze de	lle battute e raggi di raccordo			
Serie/Taglia	Raggio max smusso r	Altezza spallamento di riferimento rotaia E ₁	Altezza spallamento di riferimento carrello E 2	Luce libera sotto il carrello H ₁
HG_15	0.5	3.0	4.0	4.3
QH_15	0.5	3.0	4.0	4.0
HG/QH_20	0.5	3.5	5.0	4.6
HG/QH_25	1.0	5.0	5.0	5.5
HG/QH_30	1.0	5.0	5.0	6.0
HG/QH_35	1.0	6.0	6.0	7.5
HG/QH_45	1.0	8.0	8.0	9.5
HG_55	1.5	10.0	10.0	13.0
HG_65	1.5	10.0	10.0	15.0

Unità: mm

3.2 Serie EG e QE

3.2.1 Caratteristiche delle guide lineari serie EG e QE

Le guide lineari HIWIN del tipo EG a quattro ricircoli presentano un basso ingombro in altezza, che le rende ideali per applicazioni che presentano limitazioni di spazio.

Nonostante questo, la serie EG ha le stesse caratteristiche della serie HG - buona capacità di carico, basse forze di attrito ed elevata efficienza. Gli elementi di trattenuta sono progettati in modo da trattenere le sfere all'interno del carrello quando quest'ultimo viene rimosso dalla rotaia.

I modelli della serie QE con tecnologia SynchMotion™ offrono tutti i vantaggi della serie EG standard. Lo scorrimento ordinato e ben distanziato delle sfere grazie alla gabbia porta inoltre un miglioramento nella risposta del sistema lineare, un incremento dei limiti di velocità ammissibili, un aumento degli intervalli di rilubrificazione e la riduzione della rumorosità in fase di movimentazione. Poiché le dimensioni di montaggio dei carrelli QE sono identiche a quelle dei carrelli EG, possono essere montati anche sulla rotaia EGR standard e quindi sono esattamente intercambiabili. Per ulteriori informazioni, s.v. a Pagina 24.

3.2.2 Struttura della serie EG/QE

- o Guida a 4 ricircoli di sfere
- Angolo di contatto 45°
- o Gli elementi di trattenuta delle sfere impediscono la caduta delle sfere stesse durante lo smontaggio del carrello della rotaia
- O Sono disponibili diversi tipi di tenute in funzione del campo di applicazione
- o 6 possibili posizioni di collegamento dell'ingrassatore o dell'adattatore per lubrificazione
- Tecnologia SynchMotion™ (serie QE)

Struttura della serie EG

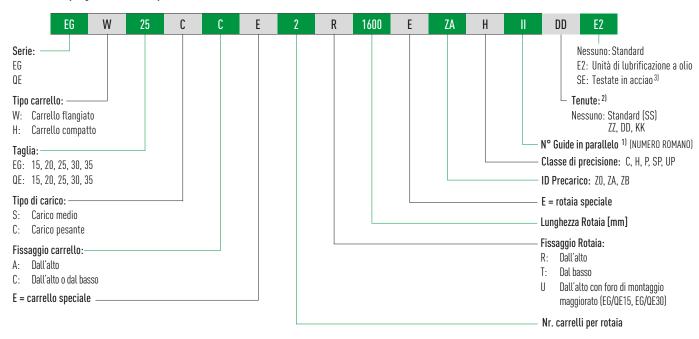
Vantaggi:

- Esente da giochi
- o Intercambiabile
- Elevata precisione
- Elevate capacità di carico in tutte le direzioni
- Alta efficienza e basso attrito anche in caso di precarico grazie al contatto ad arco circolare delle sfere sulle piste di rotolamento.

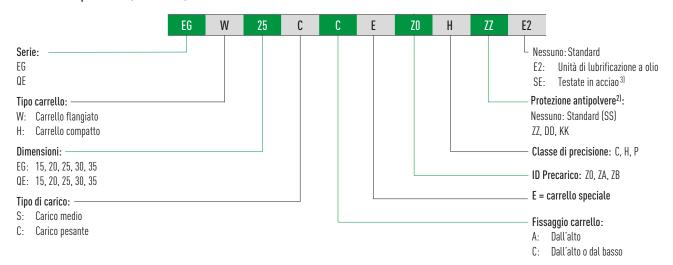
3.2.3 Codici d'ordine per le serie EG/QE

Le guide lineari EG/QE possono essere gestite assemblate o intercambiabili. Le dimensioni di entrambi i modelli sono identiche. La differenza fondamentale risiede nel fatto che nel caso dei modelli intercambiabili i carrelli e le rotaie possono essere sostituiti e gestiti liberamente.

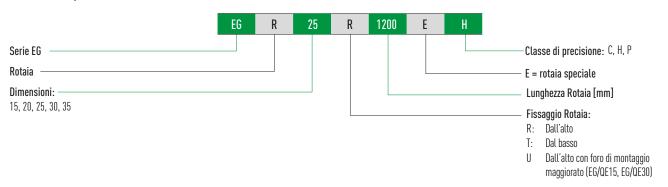
Carrello e rotaie possono essere ordinati separatamente e montati dal cliente. La categoria di precisione si estende fino alla P.


Struttura della serie QE

Ulteriori vantaggi della serie QE:


- o Migliore risposta del sistema lineare
- Ottimizzato per velocità ed accelerazioni superiori
- o Intervalli di lubrificazione più lunghi
- Basso livello di rumorosità
- O Maggiori capacità di carico dinamico

Serie EG/QE


Codice ordine per guide lineari (completamente assemblate)

Codice d'ordine per carrello (non montato)

Codice d'ordine per rotaia (non montata)

Note:

¹⁾ Il numero romano "II" indica il numero di guide di cui è previsto il parallelo e significa che un elemento dell'articolo sopra descritto si riferisce numericamente ad una guida..

Non è specificato un codice per le rotaie singole. Di default, le rotaie giuntate sono consegnate con giunzioni sfalsate.

²⁾ Panoramica dei singoli sistemi di tenuta a pagina 22

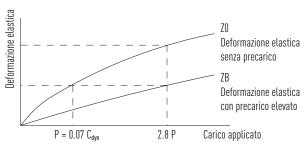
³⁾ Disponibile solo per EG 20 ed EG 25.

3.2.4 Tipi di Carrello

HIWIN offre carrelli compatti e flangiati per ciascun modello di guida.

Tabella 3.21 Tipi di Carrello					
Tipo	Serie/ Taglia	Struttura	Tolleranza [mm]	Lungh. Rotaia [mm]	Applicazioni caratteristiche
Tipo compatto	EGH-SA EGH-CA		24 – 48	100 - 4.000	Macchine utensili Torni NC Rettificatrici Frese di precisione Macchine per taglio ad alta
Carrello flangiato	EGW-SC EGW-CC				precisione Automazione Tecnologie di trasporto, Tecnologie di misurazione Macchine e apparecchi che necessitano di alta precisione nel posizionamento

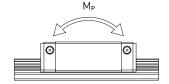
3.2.5 Tipi di Rotaia


Oltre alle rotaie con sistema di fissaggio standard dall'alto, HIWIN fornisce anche rotaie con sistema di fissaggio dal basso

3.2.6 Precarico

Definizione

E' possibile applicare un precarico ad ogni tipo di guida in base alle dimensioni delle sfere.La curva mostra che la rigidità viene raddoppiata quando si applica un precarico.La serie EG/QE offre tre classi di precarico standard, per varie applicazioni e condizioni.


Serie EG/QE

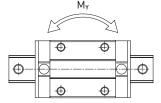

ID Precarico

Tabella 3.23	ID Precarico			
ID	Precarico		Applicazione	Esempi di utilizzo
ZO	Precarico leggero	0 – 0.02 C _{dyn}	Direzione di carico costante, urti di ridotta entità; precisione contenuta	Tecnica di trasporto, Confezionatrici automatiche Asse X-Y per macchine industriali Saldatrici
ZA	Precarico medio	0.03 – 0.05 C _{dyn}	Alti livelli di precisione richiesti	Macchine utensili Assi Z in macchine industriali Macchine per elettroerosione Torni NC Tavole X-Y di precisione Tecnologie per la misurazione
ZB	Precarico alto	0.06 – 0.08 C _{dyn}	Elevata rigidezza strutturale richiesta, presenza di urti e vibrazioni	Macchine utensili Rettificatrici Torni NC Frese orizzontali e verticali Asse Z in macchine utensili, Macchine da taglio ad elevate prestazioni

3.2.7 Capacità di carico e momenti

Tabella 3.24	Capacità di carico e mom	enti delle serie EG/QE						
Serie/	Capacità di carico	Coeff. di carico statico	Momento	dinamico [Nm]		Momento s	tatico [Nm]	
Taglia	dinamico C _{dyn} [N] ¹⁾	C ₀ [N]	M_R	M _P	My	Mor	M _{OP}	M _{OY}
EG_15S	5,350	9,400	45	22	22	80	40	40
QE_15S	8,560	8,790	68	29	29	70	30	30
EG_15C	7,830	16,190	62	48	48	130	100	100
QE_15C	12,530	15,280	98	73	73	120	90	90
EG_20S	7,230	12,740	73	34	34	130	60	60
QE_20S	11,570	12,180	123	47	47	130	50	50
EG_20C	10,310	21,130	107	78	78	220	160	160
QE_20C	16,500	20,210	171	122	122	210	150	150
EG_25S	11,400	19,500	134	70	70	230	120	120
QE_25S	18,240	18,900	212	96	96	220	100	100
EG_25C	16,270	32,400	190	160	160	380	320	320
QE_25C	26,030	31,490	305	239	239	370	290	290
EG_30S	16,420	28,100	233	122	122	400	210	210
QE_30S	26,270	27,820	377	169	169	400	180	180
EG_30C	23,700	47,460	339	274	274	680	550	550
QE_30C	37,920	46,630	544	414	414	670	510	510
EG_35S	22,660	37,380	339	187	187	560	310	310
QE_35S	36,390	36,430	609	330	330	610	330	330
EG_35C	33,350	64,840	504	354	354	980	690	690
QE_35C	51,180	59,280	863	648	648	1,000	750	750

 $^{^{1]}}$ Capacità di carico dinamica per una distanza percorsa di $50.000~\mathrm{m}$

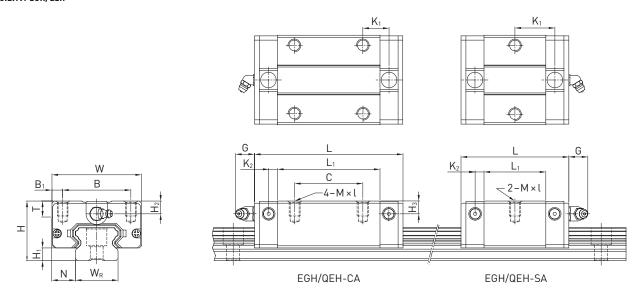
3.2.8 Rigidità

La rigidità dipende dal precarico.Con la formula F 3.3 è possibile determinare la deformazione a seconda della rigidità.

F 3.3

$$\delta = \frac{P}{k}$$

 $\delta \quad \text{Deformazione (μm)}$


P Carico di servizio (N)

k Rigidità (N/μm)

Classe di carico	Serie/Taglia	Rigidità in funzione	del precarico.	
		ZO	ZA	ZB
Carico medio	EG_15S	105	126	141
	QE_15S	96	115	128
	EG_20S	126	151	168
	QE_20S	116	139	153
	EG_25S	156	187	209
	QE_25S	137	165	184
	EG_30S	184	221	246
	QE_30S	169	203	226
	EG_35S	221	265	295
	QE_35S	214	257	287
Caico pesante	EG_15C	172	206	230
	QE_15C	157	187	209
	EG_20C	199	238	266
	QE_20C	183	219	245
	EG_25C	246	296	329
	QE_25C	219	263	293
	EG_30C	295	354	395
	QE_30C	271	326	363
	EG_35C	354	425	474
	QE_35C	333	399	445

3.2.9 Dimensioni dei carrelli EG/QE

3.2.9.1 EGH/QEH

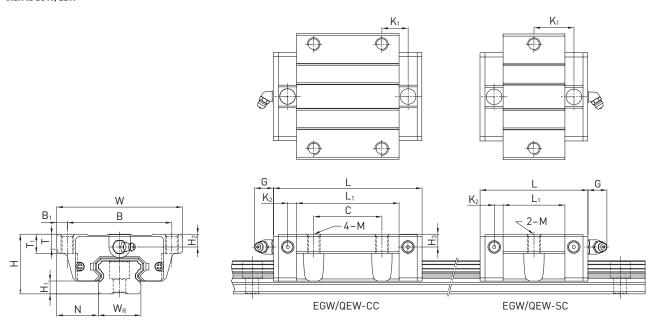
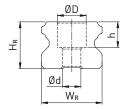


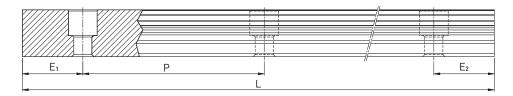
Tabella 3.26	Dime	nsioni de	el carre	ello															
Serie/ Taglia		nsioni di taggio [n		Dime	nsioni d	el carre	llo [m	m]									Coefficion N		Peso [kg]
	Н	H ₁	N	W	В	B ₁	С	L ₁	L	K ₁	K ₂	G	M×l	T	H ₂	H ₃	C _{dyn}	Co	
EGH15SA	24	4.5	9.5	34	26	4.0	_	23.1	40.1	14.80	3.50	5.7	M4 × 6	6.0	5.5	6.0	5,350	9,400	0.09
EGH15CA							26	39.8	56.8	10.15							7,830	16,190	0.15
QEH15SA	24	4.0	9.5	34	26	4.0	_	23.1	40.1	14.80	3.50	5.7	M4 × 6	6.0	5.5	6.0	8,560	8,790	0.09
QEH15CA							26	39.8	56.8	10.15							12,530	15,280	0.15
EGH20SA	28	6.0	11.0	42	32	5.0	_	29.0	50.0	18.75	4.15	12.0	M5 × 7	7.5	6.0	6.0	7,230	12,740	0.15
EGH20CA							32	48.1	69.1	12.30	_						10,310	21,130	0.24
QEH20SA	28	6.0	11.0	42	32	5.0	_	29.0	50.0	18.75	4.15	12.0	M5 × 7	7.5	6.0	6.5	11,570	12,180	0.15
QEH20CA							32	48.1	69.1	12.30							16,500	20,210	0.23
EGH25SA	33	7.0	12.5	48	35	6.5	_	35.5	59.1	21.90	4.55	12.0	M6 × 9	8.0	8.0	8.0	11,400	19,500	0.25
EGH25CA							35	59.0	82.6	16.15							16,270	32,400	0.41
QEH25SA	33	6.2	12.5	48	35	6.5	-	35.5	60.1	21.90	5.00	12.0	M6 × 9	8.0	8.0	8.0	18,240	18,900	0.24
QEH25CA							35	59.0	83.6	16.15							26,030	31,490	0.40
EGH30SA	42	10.0	16.0	60	40	10.0	_	41.5	69.5	26.75	6.00	12.0	M8 × 12	9.0	8.0	9.0	16,420	28,100	0.45
EGH30CA							40	70.1	98.1	21.05	_						23,700	47,460	0.76
QEH30SA	42	10.0	16.0	60	40	10.0	_	41.5	67.5	25.75	6.00	12.0	M8 × 12	9.0	8.0	9.0	26,270	27,820	0.44
QEH30CA							40	70.1	96.1	20.05							37,920	46,630	0.75
EGH35SA	48	11.0	18.0	70	50	10.0	_	45.0	75.0	28.50	7.00	12.0	M8 × 12	10.0	8.5	8.5	22,660	37,380	0.74
EGH35CA							50	78.0	108.0	20.00							33,350	64,840	1.10
QEH35SA	48	11.0	18.0	70	50	10.0	_	51.0	76.0	30.30	6.25	12.0	M8 × 12	10.0	8.5	8.5	36,390	36,430	0.58
QEH35CA							50	83.0	108.0	21.30							51,180	59,280	0.90

Per le dimensioni della rotaia, s.v Pagina 54, per raccordi standard e optional di lubrificazione vedi Pagina 126

3.2.9.2 EGW/QEW

Tabella 3.27 Dimensioni del carrello																				
Serie/ Taglia		nsione d aggio [m		Dime	nsioni	del car	rello [n	nm]										Coefficio carico [1		Peso [kg]
	Н	H ₁	N	W	В	B ₁	С	L ₁	L	K ₁	K ₂	G	М	T	T ₁	H ₂	H ₃	C _{dyn}	C ₀	
EGW15SC	24	4.5	18.5	52	41	5.5	_	23.1	40.1	14.80	3.50	5.7	M5	5.0	7	5.5	6.0	5,350	9,400	0.12
EGW15CC							26	39.8	56.8	10.15								7,830	16,190	0.21
QEW15SC	24	4.0	18.5	52	41	5.5	_	23.1	40.1	14.80	3.50	5.7	M5	5.0	_	5.5	6.0	8,560	8,790	0.12
QEW15CC							26	39.8	56.8	10.15								12,530	15,280	0.21
EGW20SC	28	6.0	19.5	59	49	5.0	_	29.0	50.0	18.75	4.15	12.0	M6	7.0	9	6.0	6.0	7,230	12,740	0.19
EGW20CC							32	48.1	69.1	12.30								10,310	21,130	0.32
QEW20SC	28	6.0	19.5	59	49	5.0	_	29.0	50.0	18.75	4.15	12.0	M6	7.0	_	6.0	6.5	11,570	12,180	0.19
QEW20CC							32	48.1	69.1	12.30								16,500	20,210	0.31
EGW25SC	33	7.0	25.0	73	60	6.5	_	35.5	59.1	21.90	4.55	12.0	M8	7.5	10	8.0	8.0	11,400	19,500	0.35
EGW25CC							35	59.0	82.6	16.15								16,270	32,400	0.59
QEW25SC	33	6.2	25.0	73	60	6.5	_	35.5	60.1	21.90	5.00	12.0	M8	7.5	_	8.0	8.0	18,240	18,900	0.34
QEW25CC							35	59.0	83.6	16.15								26,030	31,490	0.58
EGW30SC	42	10.0	31.0	90	72	9.0	_	41.5	69.5	26.75	6.00	12.0	M10	7.0	10	8.0	9.0	16,420	28,100	0.62
EGW30CC							40	70.1	98.1	21.05								23,700	47,460	1.04
QEW30SC	42	10.0	31.0	90	72	9.0	_	41.5	67.5	25.75	6.00	12.0	M10	7.0	_	8.0	9.0	26,270	27,820	0.61
QEW30CC							40	70.1	96.1	20.05								37,920	46,630	1.03
EGW35SC	48	11.0	33.0	100	82	9.0	_	45.0	75.0	28.50	7.00	12.0	M10	10.0	13	8.5	8.5	22,660	37,380	0.91
EGW35CC							50	78.0	108.0	20.00								33,350	64,840	1.40
QEW35SC	48	11.0	33.0	100	82	9.0	-	51.0	76.0	30.30	6.25	12.0	M10	10.0	13	8.5	8.5	36,390	36,430	0.77
QEW35CC							50	83.0	108.0	21.30								51,180	59,280	1.19


Per le dimensioni della rotaia, s.v Pagina 54, per raccordi standard e optional di lubrificazione vedi Pagina 126


Serie EG/QE

3.2.10 Dimensioni della rotaia EG

La rotaia EG viene utilizzata sia per i carrelli EG che per i carrelli QE.

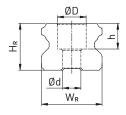
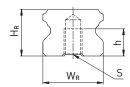

3.2.10.1 Dimensioni EGR_R

Tabella 3.28 I	Tabella 3.28 Dimensioni della rotaia EGR_R												
Serie/	Vite di montaggio	Dimen	sioni de	lla Rota	ia [mm]			Lunghezza Max.	Lunghezza Max.	E _{1/2} min	E _{1/2} max	Peso	
Taglia	per rotaia [mm]	W_R	H _R	D	h	d	P	[mm]	$E_1 = E_2 [mm]$	[mm]	[mm]	[kg/m]	
EGR15R	M3 × 16	15	12.5	6.0	4.5	3.5	60	4,000	3,900	6	54	1.25	
EGR20R	M5 × 16	20	15.5	9.5	8.5	6.0	60	4,000	3,900	7	53	2.08	
EGR25R	M6 × 20	23	18.0	11.0	9.0	7.0	60	4,000	3,900	8	52	2.67	
EGR30R	M6 × 25	28	23.0	11.0	9.0	7.0	80	4,000	3,920	9	71	4.35	
EGR35R	M8 × 25	34	27.5	14.0	12.0	9.0	80	4,000	3,920	9	71	6.14	

3.2.10.2 Dimensioni EGR_U (fori di montaggio maggiorati)


Tabella 3.29	abella 3.29 Dimensioni della rotaia EGR_U												
Serie/	Vite di montaggio	Dimen	sioni del	la rotaia	[mm]			Lunghezza Max.	Lunghezza Max.	E _{1/2} min	E _{1/2} max	Peso	
Taglia	per rotaia [mm]	W_{R}	H_{R}	D	h	d	P	[mm]	$E_1 = E_2 [mm]$	[mm]	[mm]	[kg/m]	
EGR15U	M4 × 16	15	12.5	7.5	5.3	4.5	60	4,000	3,900	6	54	1.23	
EGR30U	M8 × 25	28	23.0	14.0	12.0	9.0	80	4,000	3,920	9	71	4.23	

Nota:

- 1. La tolleranza per E corrisponde a un valore tra ± 0.5 e 1 mm.
- 2. Senza indicazione della dimensione $E_{1/2}$, considerando $E_{1/2}$ min è possibile determinare il numero massimo di fori di montaggio.
- 3. Le rotaie sono tagliate alla lunghezza desiderata. Senza alcuna indicazione della dimensione $E_{1/2}$ saranno eseguite simmetriche.

3.2.10.3 Dimensioni EGR_T (montaggio della rotaia dal basso)

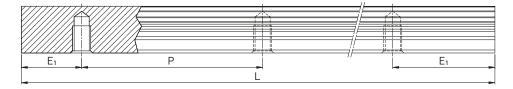
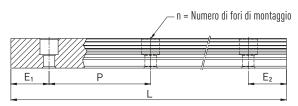


Tabella 3.30 Dimensioni della rotaia EGR_T


Serie/	Dimensio	ni della rot	aia [mm]			Lunghezza Max.	Lunghezza Max.	E _{1/2} min	E _{1/2} max	Peso
Taglia	W _R	H _R	S	h	P	[mm]	$E_1 = E_2 [mm]$	[mm]	[mm]	[kg/m]
EGR15T	15	12.5	M5	7	60	4,000	3,900	6	54	1.26
EGR20T	20	15.5	M6	9	60	4,000	3,900	7	53	2.15
EGR25T	23	18.0	M6	10	60	4,000	3,900	8	52	2.79
EGR30T	28	23.0	M8	14	80	4,000	3,920	9	71	4.42
EGR35T	34	27.5	M8	17	80	4,000	3,920	9	71	6.34

Nota:

- 1. Senza indicazione della dimensione $E_{1/2}$, considerando $E_{1/2}$ min è possibile determinare il numero massimo di fori di montaggio.
- 2. Le rotaie sono tagliate alla lunghezza desiderata. Senza alcuna indicazione della dimensione $E_{1/2}$ saranno eseguite simmetriche.

3.2.10.4 Calcolo della lunghezza delle rotaie

HIWIN offre rotaie con lunghezze personalizzate. Per evitare che l'ultima parte della rotaia diventi instabile, i valori di E non devono essere superiori alla metà della lunghezza del passo (P). Contemporaneamente, il valore $E_{1/2}$ deve essere compreso tra $E_{1/2}$ min e $E_{1/2}$ max in modo da non andare in interferenza con il foro di montaggio.

$$L = (n-1) \times P + E_1 + E_2$$

- L Lunghezza totale della rotaia [mm]
- n Numero di fori di montaggio
- P Distanza tra due fori [mm]
- E_{1/2} Distanza tra il centro dell'ultimo foro di montaggio e l'estremità della rotaia [mm]

3.2.10.5 Coppie di serraggio delle viti di ancoraggio

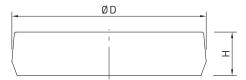

Il serraggio insufficiente delle viti di fissaggio compromette gravemente la precisione della guida lineare; di conseguenza, raccomandiamo le coppie di serraggio seguenti a seconda delle dimensioni delle viti.

	Tabella 3.31	Coppie	di serraggio	delle viti	di fissaggio	ai sensi ISO	4762-12.9
--	--------------	--------	--------------	------------	--------------	--------------	-----------

Tabella 3.31 Copple al Sell	Tabetta 3.51 Cupple in Serraggio dette 7tt in 155aggio al Selisi 150 4702-12.7												
Serie/Taglia	Dimensione vite	Coppia [Nm]	Serie/Taglia	Dimensioni	Coppia [Nm]								
EG/QE_15	M3 × 16	2	EG/QE_30	M6 × 25	13								
EG/QE_15U	M4 × 16	4	EG/QE_30U	M8 × 25	30								
EG/QE_20	M5 × 16	9	EG/QE_35	M8 × 25	30								
EG/QE_25	M6 × 20	13											

Serie EG/QE

3.2.10.6 Tappi per i fori di montaggio delle rotaieI tappi servono a impedire che trucioli e sporco entrino nei fori di montaggio.l tappi standard in plastica sono forniti unitamente alle singole rotaie.Ulteriori tappi opzionali devono essere ordinati separatamente.

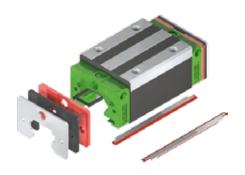
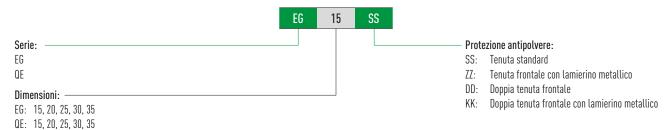


Tabella 3.32 Tappi per i fori di montaggio delle rotaie													
Rotaia	Vite	Articolo nu	ımero				Ø D [mm]	Altezza H [mm]					
		Plastica		Ottone		Acciao							
		Gmbh	TW	Gmbh	TW								
EGR15R	M3	5-002217	950001B1	5-001340	95000EA1	_	6.0	1.2					
EGR20R	M5	5-002220	950003D2	5-001350	95000GA1	5-001352	9.5	2.5					
EGR25R	M6	5-002221	950004D2	5-001355	95000HA1	5-001357	11.0	2.8					
EGR30R	M6	5-002221	950004D2	5-001355	95000HA1	5-001357	11.0	2.8					
EGR35R	M8	5-002222	950005D2	5-001360	95000IA1	5-001362	14.0	3.5					
EGR15U	M4	5-002218	950002C1	5-001344	95000EA1	_	7.5	1.2					
EGR30U	M8	5-002222	950005D2	5-001360	95000IA1	5-001362	14.0	3.5					

3.2.11 Sistemi di tenuta

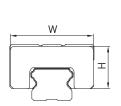

Per i carrelli HIWIN sono disponibili diversi sistemi di tenuta.Una panoramica è disponibile anche a pagina 22. Nella tabella seguente è riportata la lunghezza complessiva dei carrelli con i diversi sistemi di tenuta.Sono disponibili sistemi di tenuta per queste grandezze

erie/	Lunghezza totale L	Lunghezza totale L								
glia	SS	DD	ZZ	KK						
G_15S	40.1	44.1	41.7	45.7						
_15S	40.1	44.1	42.1	46.1						
_15C	56.8	60.8	58.4	62.4						
_15C	56.8	60.8	58.8	62.8						
_20\$	50.0	54.0	51.6	55.6						
E_20S	50.0	54.0	52.0	56.0						
G_20C	69.1	73.1	70.7	74.7						
_20C	69.1	73.1	71.1	75.1						
_25\$	59.1	63.1	61.1	65.1						
_25S	60.1	65.1	62.1	67.1						
_25C	82.6	86.6	84.6	88.6						
_25C	83.6	88.6	85.6	90.6						
_30S	69.5	73.5	71.5	75.5						
_30S	67.5	72.5	69.5	74.5						
5_30C	98.1	102.1	100.1	104.1						
_30C	96.1	101.1	98.1	103.1						
_35S	75.0	79.0	78.0	82.0						
_35S	76.0	80.0	79.0	83.0						
_35C	108.0	112.0	111.0	115.0						
_35C	108.0	112.0	111.0	115.0						

3.2.11.1 Codifica dei set di tenute

I set di tenute sono sempre forniti completi di viti per il montaggio e includono i pezzi necessari adeguati oltre alla tenuta standard.

Serie EG/QE


3.2.12 Attrito

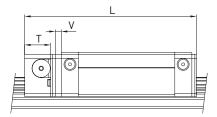
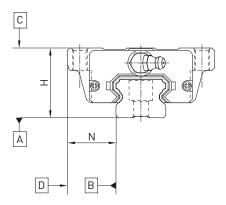

La tabella riporta la resistenza massima all'avanzamento delle singole tenute frontali. A seconda della classificazione della guarnizione (SS, ZZ, DD, KK) sarà necessario moltiplicare in modo corrispondente il valore. I valori indicati si intendono validi per quanto riguarda carrelli su rotaie senza trattamento. Su rotaie con trattamento si vengono a creare forze di attrito più elevate.

Tabella 3.34 Resistenza all'avanzamento delle tenute frontali standard							
Serie/Taglia	Attrito [N]	Serie/Taglia	Attrito [N]				
EG_15	1.0	QE_15	1.1				
EG_20	1.0	QE_20	1.4				
EG_25	1.0	QE_25	1.7				
EG_30	1.5	QE_30	2.1				
EG_35	2.0	QE_35	2.3				

3.2.13 Unità di lubrificazione E2

Per i dettagli dell'unità di lubrificazione si rimanda alle informazioni generali nella sezione dedicata "2.6.3 Unità di lubrificazione a olio E2" a Pagina 15.


Tabella 3.35 Dimen s	Tabella 3.35 Dimensioni del carrello con unità di lubrificazione E2									
Modello/Taglia	Dimensi	Dimensioni del carrello [mm]								
	W	Н	T	٧	L _{SS} ¹⁾	L _{ZZ} ¹⁾	L _{DD} 1)	L _{KK} 1)	[cm ³]	
EG_15S	33.3	18.7	11.5	3.0	54.6	56.2	58.6	60.2	1.7	
EG_15C	33.3	18.7	11.5	3.0	71.3	72.9	75.3	76.9	1.7	
EG_20S	41.3	20.9	13.0	3.0	66.0	67.6	70.0	71.6	2.9	
EG_20C	41.3	20.9	13.0	3.0	85.1	86.7	89.1	90.7	2.9	
EG_25S	47.3	24.9	13.0	3.0	75.1	77.1	79.1	81.1	4.8	
EG_25C	47.3	24.9	13.0	3.0	98.6	100.6	102.6	104.6	4.8	
EG_30S	59.3	31.0	13.0	3.0	85.5	87.5	89.5	91.5	8.9	
EG_30C	59.3	31.0	13.0	3.0	114.1	116.1	118.1	120.1	8.9	

¹⁾ Lunghezza totale in funzione della protezione antipolvere selezionata. SS = protezione antipolvere standard

3.2.14 Tolleranze in funzione della classe di precisione

Le serie EG e QE e sono disponibili in cinque differenti classi di precisione, a seconda del parallelismo tra carrelli e rotaie e della precisione della altezza H e della larghezza N. La scelta è determinata dai requisiti della macchina in cui si applicano le guide lineari. HIWIN srl gestisce nella propria sede fino alla classe P.

3.2.14.1 Parallelismo

Parallelismo tra la superficie di battuta del carrello D e della rotaia B e parallelismo tra la superficie superiore del carrello C e la superificie d'appoggio della rotaia A. La misurazione è considerata con rotaia montata in condizioni ottimali e al centro di ogni carrello.

Lunghezza Rotaia [mm]	Classe di precisione							
	C	Н	Р	SP	UP			
- 100	12	7	3	2	2			
100 - 200	14	9	4	2	2			
200 - 300	15	10	5	3	2			
300 - 500	17	12	6	3	2			
500 - 700	20	13	7	4	2			
700 - 900	22	15	8	5	3			
900 – 1100	24	16	9	6	3			
1100 – 1500	26	18	11	7	4			
1500 – 1900	28	20	13	8	4			
1900 – 2500	31	22	15	10	5			
2500 – 3100	33	25	18	11	6			
3100 – 3600	36	27	20	14	7			
3600 – 4000	37	28	21	15	7			

Serie EG/QE

3.2.14.2 Precisione - altezza e larghezza

Tolleranza dell'altezza H

Massima deviazione assoluta dell'altezza H, misurata tra la superficie superiore del carrello C e la superficie inferiore della rotaia A per qualsiasi posizione del carrello sulla rotaia.

Variazione di altezza H

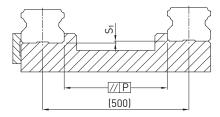
Massima deviazione relativa dell'altezza H tra due o più carrelli sulla stessa rotaia o su rotaie in parallelo, misurata nella medesima posizione della rotaia.

Tolleranza della larghezza N

Massima deviazione assoluta della larghezza N, misurata tra le superfici di battuta del carrello D e della rotaia B per qualsiasi posizione del carrello sulla rotaia.

Variazione della larghezza N

Massima deviazione relativa della larghezza N tra due o più carrelli sulla stessa rotaia, misurata nella medesima posizione della rotaia.


Tabella 3.37 Tolleranze di a	Tabella 3.37 Tolleranze di altezza e larghezza								
Serie/Taglia	Classe di precisione	Tolleranza dell'altezza H	Tolleranza larghezza N	Variazione di altezza H	Variazione larghezza N				
EG_15, 20	C (Normale)	± 0.1	± 0.1	0.02	0.02				
QE_15, 20	H (Elevata)	± 0.03	± 0.03	0.01	0.01				
	P (Preciso)	0/-0.0313	0/-0.031	0.006	0.006				
	SP (Super Preciso)	0/- 0.015	0/- 0.015	0.004	0.004				
	UP (Ultra Preciso)	0/- 0.008	0/- 0.008	0.003	0.003				
EG_25, 30, 35	C (Normale)	± 0.1	± 0.1	0.02	0.03				
QE_25, 30, 35	H (Elevata)	± 0.04	± 0.04	0.015	0.015				
	P (Preciso)	0/- 0.041)	0/- 0.041)	0.007	0.007				
	SP (Super Preciso)	0/- 0.02	0/- 0.02	0.005	0.005				
	UP (Ultra Preciso)	0/-0.01	0/-0.01	0.003	0.003				

Unità: mm

3.2.14.3 Tolleranze ammissibili delle superfici di montaggio.

Per sfruttare al meglio le elevatissime precisione, rigidità e durata delle guide EG/QE è necessario rispettare le tolleranze di lavorazione delle superfici di montaggio

Parallelismo della superficie di riferimento (P):

¹⁾ Guida lineare completamente assemblata

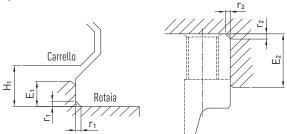


Tabella 3.38 Tolleranza massima di parallelismo (P)							
Serie/Taglia	Classe di precarico						
	ZO	ZA	ZB				
EG/QE_15	25	18	-				
EG/QE_20	25	20	18				
EG/QE_25	30	22	20				
EG/QE_30	40	30	27				
EG/QE_35	50	35	30				
Unità: µm							

Tabella 3.39 Tolleranza massima della differenza in altezza della superficie di riferimento (S ₁)						
Serie/Taglia	Classe di precarico					
	ZO	ZA	ZB			
EG/QE_15	130	85	-			
EG/QE_20	130	85	50			
EG/QE_25	130	85	70			
EG/QE_30	170	110	90			
EG/QE_35	210	150	120			
Unità: µm						

3.2.15 Altezze delle battute e raggi di raccordo

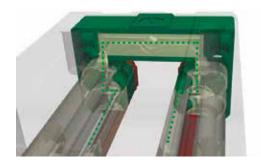
Se le altezze e i raccordi degli spallamenti delle superficie di montaggio non sono corretti, la precisione risulterà diversa da quella prevista e si verificherà un'interferenza con il profilo della rotaia o del carrello.Rispettando le altezze e i raccordi previsti per gli spallamenti è possibile eliminare eventuali errori di installazione.

Tabella 3.40 Altezze delle battute e raggi di raccordo							
Serie/Taglia	Raggio max. smusso r ₁	Raggio max. smusso r ₂	Altezza spallamento di riferimento rotaia E ₁	Altezza spallamento di riferimento Carrello E ₂	Luce libera sotto il carrello H ₁		
EG/QE_15	0.5	0.5	2.7	5.0	4.5		
EG/QE_20	0.5	0.5	5.0	7.0	6.0		
EG/QE_25	1.0	1.0	5.0	7.5	7.0		
EG/QE_30	1.0	1.0	7.0	7.0	10.0		
EG_35	1.0	1.0	7.5	9.5	11.0		
QE_35	1.0	1.5	7.5	9.5	11.0		
Unità: mm		•					

3.3 Serie CG

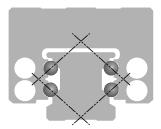
3.3.1 Caratteristiche delle guide lineari della serie CG

Le guide lineari HIWIN della serie CG grazie alla configurazione a 0 delle piste garantiscono una capacità di carico a torsione elevata, soprattutto nella direzione Mr.
La geometria modificata della pista garantisce elevati coefficienti di carico.
La nuova tenuta flessibile si adatta perfettamente aderendo al profilo della rotaia e offre una protezione antipolvere elevata e costante.


Per proteggere la tenuta frontale dai danni meccanici, la serie CG monta di serie un lamierino metallico davanti alla tenuta. È anche disponibile, su richiesta, un nastro di copertura, per ridurre al minimo in modo permanente l'ingresso di polvere e l'usura del labbro. Grazie all'apposito utensile, il nastro di copertura si installa facilmente in pochi passaggi. Per una distribuzione ottimale del lubrificante, il carrello è dotato di un sistema di canali supplementari che convoglia il lubrificante al centro del carrello direttamente sulle sfere nella zona di lavoro. Questo consente di allungare gli intervalli di lubrificazione, con vantaggi significativi in particolare per le applicazioni a corsa breve.

3.3.2 Struttura della serie CG

Guida a 4 ricircoli di sfere priva di giochi e con la migliore protezione antipolvere già nella versione standard.

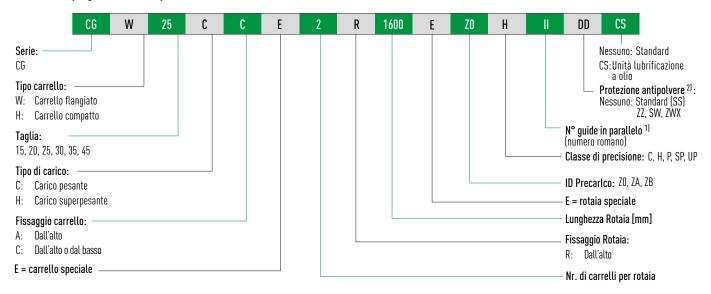

Sistema di lubrificazione ottimizzato per intervalli di lubrificazione più lunghi e applicazioni a corsa breve.

Montaggio facile, migliore protezione dalla polvere e dall'usura della tenuta frontale, grazie al nastro di copertura

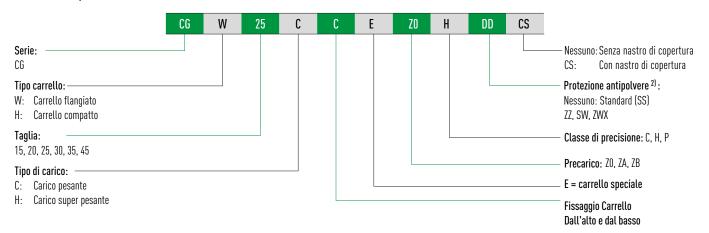
Configurazione a O e geometria ottimizzata delle piste per maggiori capacità di carico e migliore resistenza a torsione.

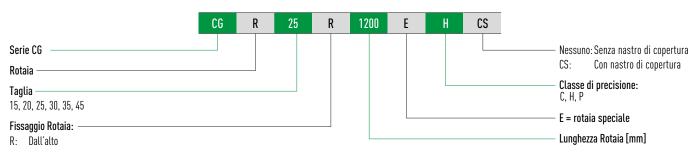
Vantaggi:

- Esente da giochi
- Intercambiabile
- Elevata precisione
- O Elevata resistenza ai momenti, soprattutto nella direzione Mr.
- O Nastro di copertura opzionale.


3.3.3 Codici d'ordine per la serie CG

Le guide lineari CG possono essere gestite assemblate o intercambiabili.Le dimensioni di entrambi i modelli sono identiche.La differenza principale consiste nel fatto che nel caso dei modelli intercambiabili i carrelli e le rotaie possono essere sostituiti e gestiti liberamente.


Carrelli e rotaie possono essere ordinati separatamente e montati dal cliente. La precisione arriva alla classe P.


Codice ordine per guide lineari (completamente assemblate)

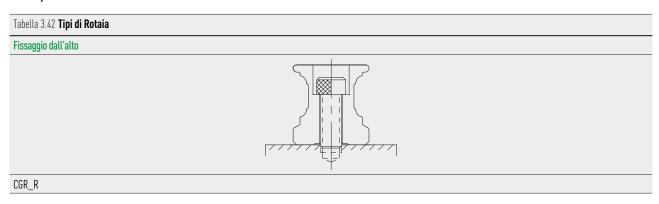
Codice d'ordine per carrello (non montato)

Codice d'ordine rotaia

Nota

¹⁾ Il numero romano "II" indica il numero di guide di cui è previsto il parallelo e significa che un elemento dell'articolo sopra descritto si riferisce numericamente ad una guida. Nel caso di rotaie singole non è indicata alcuna cifra. Di default, le rotaie giuntate sono consegnate con giunzioni sfalsate.

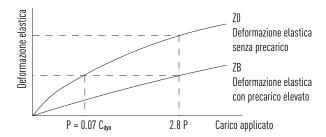
²⁾ Panoramica dei singoli sistemi di tenuta a pagina 22


Serie CG

3.3.4 Tipi di carrello

HIWIN offre carrelli compatti e flangiati per ciascun modello di guida.

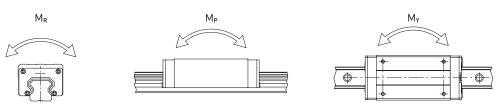
Tabella 3.41 Tipi di carrello					
Tipo	Serie/ Taglia	Struttura	Tolleranza [mm]	Lungh. Rotaia [mm]	Applicazioni caratteristiche
Tipo compatto	CGH-CA CGH-HA		28 – 70	250 - 4,000	Lavorazione del legno Macchine utensili Torni NC Rettificatrici Frese di precisione Macchine da taglio ad elevate prestaz.
Carrello flangiato	CGW-CC CGW-HC		24 – 60		Tecnologie di automazione Tecnologie di trasporto Tecnologie di misurazione Macchine e apparecchi che necessitano di alta precisione nel posizionamento


3.3.5 Tipi di Rotaia

3.3.6 Precarico

Definizione

E' possibile applicare un precarico ad ogni tipo di guida in base alle dimensioni delle sfere.La curva mostra che la rigidità viene raddoppiata quando si applica un precarico.La serie CG offre tre classi di precarico standard, per varie applicazioni e condizioni.



ID Precarico

Tabella 3.43	ID Precarico			
ID	ID Precarico		Applicazione	Esempi di utilizzo
ZO	Precarico leggero	0 - 0.02 C _{dyn}	Direzione di carico costante, urti di ridotta entità, precisione contenuta	 Tecnica di trasporto, Confezionatrici automatiche Asse X-Y per macchine industriali Saldatrici
ZA	Precarico medio	0.05 – 0.07 C _{dyn}	Alti livelli di precisione richiesti	Macchine utensili Assi Z in macchine industriali Macchine per elettroerosione Torni NC Tavole X-Y di precisione Tecnica di misurazione
ZB	Precarico alto	sopra 0.1 C _{dyn}	Elevata rigidezza strutturale richiesta, presenza di urti e vibrazioni	Macchine utensili Rettificatrici Torni NC Frese orizzontali e verticali Asse Z in macchine utensili, Macchine da taglio ad elevate prestazioni

3.3.7 Capacità di carico e momenti

Tabella 3.44 C	Tabella 3.44 Capacità di carico e momenti della serie CG								
Serie/	Capacità di Carico	Capacità di carico	Momento [Dinamico [Nm]		Momento s	Momento statico [Nm]		
Taglia	Dinamico C _{dyn} [N] 1)	statico C ₀ [N]	M_R	M _P	Мү	Mor	M _{OP}	M _{OY}	
CG_15C	14,700	19,520	143	105	105	190	140	140	
CG_20C	23,700	30,510	287	218	218	370	280	280	
CG_20H	28,600	39,900	344	344	344	480	480	480	
CG_25C	34,960	43,940	477	390	390	600	490	490	
CG_25H	40,500	54,080	554	546	546	740	730	730	
CG_30C	46,000	55,190	792	583	583	950	700	700	
CG_30H	58,590	78,180	1,011	921	921	1,350	1,230	1,230	
CG_35C	61,170	79,300	1,334	841	841	1,730	1,090	1,090	
CG_35H	77,900	112,340	1,705	1,400	1,400	2,460	2,020	2,020	
CG_45C	103,830	122,040	3,037	2,076	2,076	3,570	2,440	2,440	
CG_45H	124,430	217,200	2,893	2,549	2,549	5,050	4,450	4,450	

 $^{^{\,1)}}$ Capacità di carico dinamica per una distanza percorsa di 50.000 m

Serie CG

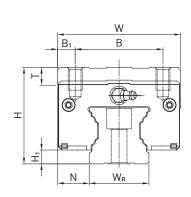
3.3.8 RigiditàLa rigidità dipende dal precarico.Con la formula F 3.5 è possibile determinare la deformazione a seconda della rigidità.

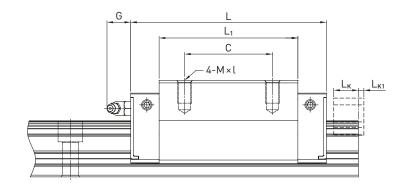
F 3.5

$$\delta = \frac{P}{k}$$

 $\delta \quad \text{Deformazione} \, [\mu \text{m}]$

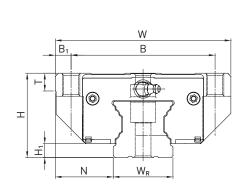
Carico di servizio


k Rigidità [N/μm]


Classe di carico	Serie/	Rigidità in funzione	Rigidità in funzione del precarico.				
	Taglia	ZO	ZA	ZB			
Carico pesante	CG_15C	224	291	332			
	CG_20C	271	415	483			
	CG_25C	338	440	574			
	CG_30C	447	553	757			
	CG_35C	468	610	800			
	CG_45C	554	717	820			
Carico super pesante	CG_20H	361	467	534			
	CG_25H	414	536	612			
	CG_30H	492	638	729			
	CG_35H	566	733	838			
	CG_45H	742	961	1,099			

3.3.9 Dimensioni dei carrelli CG

3.3.9.1 CGH



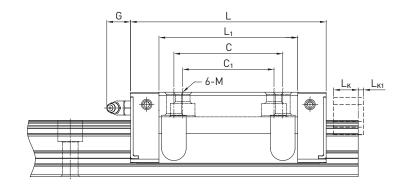


Tabella 3.46	Dimensi	oni del ca	arrello														
Serie/ Taglia	Dimen: montag	sioni di ggio [mm]	Dimen	sioni del	carrello [mm]								Coefficie carico [N		Peso [KG]
	Н	H ₁	N	W	В	B ₁	С	L ₁	L	G	Mxl	T	L _K	L _{K1}	C _{dyn}	C_0	
CGH15CA	28	4.1	9.5	34	26	4.0	26	39.6	58.2	6.0	M4 × 6	6.0	12.8	2.2	14,700	19,520	0.15
CGH15HA							26	53.6	72.6						17,600	25,530	0.25
CGH20CA	30	4.6	12.0	44	32	6.0	36	52.5	74.9	6.0	M5 × 6	8.0	10.8	2.2	23,700	30,510	0.33
CGH20HA							50	68.5	90.9						28,600	39,900	0.46
CGH25CA	40	6.1	12.5	48	35	6.5	35	61.0	84.0	12.0	M6 × 8	8.0	12.8	2.2	34,960	43,940	0.59
CGH25HA							50	78.4	101.4						40,500	54,080	0.71
CGH30CA	45	7.0	16.0	60	40	10.0	40	69.0	97.4	12.0	M8 × 10	9.5	9.8	2.2	46,000	55,190	0.94
CGH30HA							60	91.5	119.9						58,590	78,180	1.24
CGH35CA	55	7.6	18.0	70	50	10.0	50	79.0	111.4	12.0	M8 × 13	10.2	15.8	2.2	61,170	79,300	1.62
CGH35HA							72	103.4	135.8						77,900	112,340	2.38
CGH45CA	70	9.7	20.5	86	60	13.0	60	97.2	137.6	12.9	$M10 \times 17$	16.0	15.8	2.2	103,530	122,040	3.01
CGH45HA							80	132.3	172.3						124,430	217,200	

Per le dimensioni della rotaia, s.v Pagina 69, per raccordi standard e optional di lubrificazione vedi Pagina 126

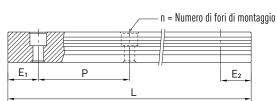
3.3.9.2 CGW


Tabella 3.47	Dimens	ioni del	carrello															
Serie/ Taglia		nsioni di nggio [mr	n]	Dimer	nsioni de	l carrell	o [mm]			-					·	Coefficie carico [N		Peso [KG]
	Н	H ₁	N	W	В	B ₁	С	C ₁	L ₁	L	G	М	T	L _K	L _{K1}	C _{dyn}	C_0	
CGW15CC	24	4.1	16.0	47	38	4.5	30	26	39.6	58.2	6.0	M5	6.0	12.8	2.2	14,700	19,520	0.14
CGW15HC									53.6	72.6						17,600	25,530	0.36
CGW20CC	30	4.6	21.5	63	53	5.0	40	35	52.5	74.9	6.0	M6	6.5	10.8	2.2	23,700	30,510	0.47
CGW20HC									68.5	90.9						28,600	39,900	0.53
CGW25CC	36	6.1	23.5	70	57	6.5	45	40	61.0	84.0	12.0	M8	7.0	12.8	2.2	34,960	43,940	0.68
CGW25HC									78.6	104.6						42,180	57,460	0.90
CGW30CC	42	7.0	31.0	90	72	9.0	52	44	69.0	97.4	12.0	M10	10.5	9.8	2.2	46,000	55,190	1.19
CGW30HC									91.5	119.9						58,590	78,180	1.37
CGW35CC	48	7.6	33.0	100	82	9.0	62	52	79.0	111.4	12.0	M10	10.1	15.8	2.2	61,170	79,300	1.79
CGW35HC									103.4	135.8						77,900	112,340	2.45
CGW45CC	60	9.7	37.5	120	100	10.0	80	60	97.2	137.6	12.9	M12	15.1	15.8	2.2	103,530	122,040	3.00
CGW45HC									132.3	172.3						124,430	217,200	

Per le dimensioni della rotaia, s.v Pagina 69, per raccordi standard e optional di lubrificazione vedi Pagina 126

3.3.10 Dimensioni della rotaia CG

3.3.10.1 Dimensioni della rotaia CGR_R


Tabella 3.48	Dimensioni della rota	aia CGR	_R										
Serie/	Vite di montaggio	Dimensioni della rotaia [mm]								Lunghezza Max.	Lunghezza Max.	E _{1/2} min	E _{1/2} max
Taglia	per rotaia [mm]	\mathbf{W}_{R}	H _R	D	h	d	P	L _K	L _{K1}	[mm]	$E_1 = E_2 [mm]$	[mm]	[mm]
CGR15R	M4 × 16	15	16.20	7.5	5.9	4.5	60	13	2	4,000	3,900	6	54
CGR20R	M5 × 20	20	20.60	9.5	8.5	6.0	60	11	2	4,000	3,900	7	53
CGR25R	M6 × 22	23	24.30	11.0	9.0	7.0	60	13	2	4,000	3,900	8	52
CGR30R	M8 × 25	28	28.40	14.0	12.4	9.0	80	10	2	4,000	3,920	9	71
CGR35R	M8 × 30	34	31.90	14.0	12.0	9.0	80	16	2	4,000	3,920	9	71
CGR45R	M12 × 35	45	39.85	20.0	17.0	14.0	105	16	2	4,000	3,885	12	93

Nota:

- 1. Senza indicazione della dimensione $E_{1/2}$, considerando $E_{1/2}$ min è possibile determinare il numero massimo di fori di montaggio.
- 2. Le rotaie sono tagliate alla lunghezza desiderata. Senza alcuna indicazione della dimensione $E_{1/2}$ saranno eseguite simmetriche

3.3.10.2 Calcolo della lunghezza delle rotaie

HIWIN offre rotaie con lunghezze personalizzate. Per evitare che l'ultima parte della rotaia diventi instabile, i valori di E non devono essere superiori alla metà della lunghezza del passo (P). Contemporaneamente, il valore $E_{1/2}$ deve essere compreso tra $E_{1/2}$ min e $E_{1/2}$ max in modo da non andare in interferenza con il foro di montaggio.

F3.6
$$L = (n-1) \times P + E_1 + E_2$$

- L Lunghezza totale della rotaia [mm]
- n Numero di fori di montaggio
- P P Distanza tra due fori [mm]
- E_{1/2} Distanza tra il centro dell'ultimo foro di montaggio e l'estremità della rotaia [mm]

Serie CG

3.3.10.3 Coppie di serraggio delle viti di ancoraggioIl serraggio insufficiente delle viti di fissaggio compromette gravemente la precisione della guida lineare; di conseguenza, raccomandiamo le coppie di serraggio seguenti a seconda delle dimensioni delle viti.

Tabella 3.49 Coppie di ser	raggio delle viti di fissaggio	ai sensi ISO 4762-12.9			
Serie/Taglia	Dimensioni vite	Coppia [Nm]	Serie/Dimensioni	Dimensioni vite	Coppia [Nm]
CG_15	M4 × 16	4	CG_30	M10	70
CG_20	M5×16	9	CG_35	M8 × 25	30
CG_25	M6 × 20	13	CG_35	M10	70
CG_30	M8 × 25	30	CG_45	M12 × 35	120

3.3.10.4 Tappi per i fori di montaggio delle rotaie

I tappi servono a impedire che trucioli e sporco entrino nei fori di montaggio. I valori standard in plastica sono forniti unitamente alle singole rotaie. Ulteriori tappi opzionali devono essere ordinati separatamente.

Tabella 3.50 Tappi per	i fori di montaggio delle	rotaie						
Rotaia	Vite	Numero art	icolo				ØD [mm]	Altezza H [mm]
		Plastica		Ottone		Acciaio		
		Gmbh	TW	Gmbh	TW			
CGR15R	M4	5-002218	950002C1	5-001344	95000FA1	_	7.5	1.2
CGR20R	M5	5-002220	950003D2	5-001350	95000GA1	5-001352	9.5	2.5
CGR25R	M6	5-002221	950004D2	5-001355	95000HA1	5-001357	11.0	2.8
CGR30R	M8	5-002222	950005D2	5-001360	95000IA1	5-001362	14.0	3.5
CGR35R	M8	5-002222	950005D2	5-001360	95000IA1	5-001362	14.0	3.5
CGR45R	M12	5-002223	950007D2	5-001324	95000JA1	5-001327	20.0	4.0
CGR55R	M14	5-002224	950008C2	5-001324	95000KA1	5-001332	23.0	4.0
CGR65R	M16	5-002225	950009D1	5-001324	95000LA1	5-001337	26.0	4.0

3.3.11 Sistemi di tenuta

Per i carrelli HIWIN sono disponibili diversi sistemi di tenuta. Una panoramica è disponibile anche a pagina 22. Nella tabella seguente è riportata la lunghezza complessiva dei carrelli con i diversi sistemi di tenuta. Sono disponibili sistemi di tenuta per queste grandezze

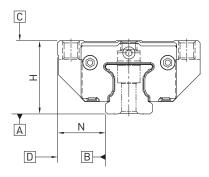


Tabella 3.51 Lun	ghezza complessiva dei carr	elli con diversi sistemi di tenuta										
Serie/ Taglia	Lunghezza totale L	Lunghezza totale L										
	SS	22	SW*	ZWX*								
CG15C	58.2	61.2	63.2	66.2								
CG15H	72.6	75.6	77.6	80.6								
CG20C	74.9	77.9	79.9	82.9								
CG20H	90.9	93.9	95.9	98.9								
CG25C	84.0	90.0	89.0	95.0								
CG25H	104.6	110.6	109.6	115.6								
CG30C	97.4	103.4	102.8	108.8								
CG30H	118.9	124.9	124.3	130.3								
CG35C	111.4	117.4	116.8	122.8								
CG35H	137.4	143.4	142.8	148.8								
CG45C	137.6	143.6	143.0	149.0								
CG45H	172.3	178.3	177.7	183.7								

Unità: mm

3.3.12 Tolleranze in funzione della classe di precisione

La serie CG è disponibile in cinque differenti classi di precisione, a seconda del parallelismo tra carrelli e rotaie e della precisione della altezza H e della larghezza N. La scelta è determinata dai requisiti della macchina in cui si applicano le guide lineari.
HIWIN srl gestisce nella propria sede fino alla classe P.

^{*} Disponibile solo da OG

Serie CG

3.3.12.1 Parallelismo

Parallelismo tra la superficie di battuta del carrello D e della rotaia B e parallelismo tra la superficie superiore del carrello C e la superficie d'appoggio della rotaia A.

La misurazione è considerata con rotaia montata in condizioni ottimali e al centro di ogni carrello.

Lunghezza rotaia [mm]	Classe di precisione									
	C	Н	Р	SP	UP					
- 100	12	7	3	2	2					
100 - 200	14	9	4	2	2					
200 - 300	15	10	5	3	2					
300 - 500	17	12	6	3	2					
500 - 700	20	13	7	4	2					
700 - 900	22	15	8	5	3					
900 – 1100	24	16	9	6	3					
1100 – 1500	26	18	11	7	4					
1500 – 1900	28	20	13	8	4					
1900 – 2500	31	22	15	10	5					
2500 – 3100	33	25	18	11	6					
3100 – 3600	36	27	20	14	7					
3600 – 4000	37	28	21	15	7					

72

3.3.12.2 Precisione - altezza e larghezza

Tolleranza dell'altezza H

Massima deviazione assoluta dell'altezza H, misurata tra la superficie superiore del carrello C e la superficie inferiore della rotaia A per qualsiasi posizione del carrello sulla rotaia.

Variazione di altezza H

Massima deviazione relativa dell'altezza H tra due o più carrelli sulla stessa rotaia o su rotaie in parallelo, misurata nella medesima posizione della rotaia.

Tolleranza della larghezza N

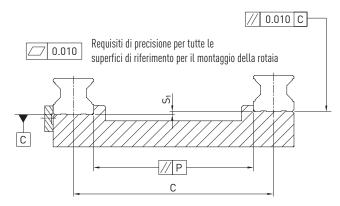
Massima deviazione assoluta della larghezza N, misurata tra le superfici di battuta del carrello D e della rotaia B per qualsiasi posizione del carrello sulla rotaia.

Variazione della larghezza N

Massima deviazione relativa della larghezza N tra due o più carrelli sulla stessa rotaia, misurata nella medesima posizione della rotaia.

Tabella 3.53 Altezza e toll	eranze				
Serie/dimensioni	Classe di precisione	Tolleranza dell'altezza H	Tolleranza larghezza N	Variazione di altezza H	Variazione larghezza N
CG_15, 20	C (Normale)	± 0.1	± 0.1	0.02	0.02
	H (Elevato)	± 0.03	± 0.03	0.01	0.01
	P (Preciso)	0/- 0.031)	0/- 0.031)	0.006	0.006
	SP (Super preciso)	0/- 0.015	0/- 0.015	0.004	0.004
	UP (Ultra preciso)	0/-0.008	0/-0.008	0.003	0.003
CG_25, 30, 35	C (Normale)	± 0.1	± 0.1	0.02	0.03
	H (Elevato)	± 0.04	± 0.04	0.015	0.015
	P (Preciso)	0/- 0.041)	0/-0.041	0.007	0.007
	SP (Super preciso)	0/-0.02	0/-0.02	0.005	0.005
	UP (Ultra preciso)	0/- 0.01	0/- 0.01	0.003	0.003
CG_45	C (Normale)	± 0.1	± 0.1	0.03	0.03
	H (Elevato)	± 0.05	± 0.05	0.015	0.02
	P (Preciso)	0/-0.051)	0/- 0.051)	0.007	0.01
	SP (Super preciso)	0/-0.03	0/-0.03	0.005	0.007
	UP (Ultra preciso)	0/- 0.02	0/- 0.02	0.003	0.005

Unità: mm


¹⁾ Guida lineare completamente assemblata

Serie CG

3.3.12.3 Tolleranze ammissibili delle superfici di montaggio

Per sfruttare al meglio la precisione, rigidità e durata delle guide CG è necessario rispettare le tolleranze di lavorazione delle superfici

Tolleranza per il parallelismo della superficie di riferimento (P)

Serie/Taglia	Classe di precarico	Classe di precarico										
	ZO	ZA	ZB									
CG_15	9	5	4									
CG_20	11	7	5									
CG_25	12	8	6									
G_30	14	9	7									
CG_35	15	11	8									
CG_45	19	12	10									

Tolleranza della differenza in altezza della superficie di riferimento $(S)_1$

$$F3.7 S_1 = C \times K - T_H$$

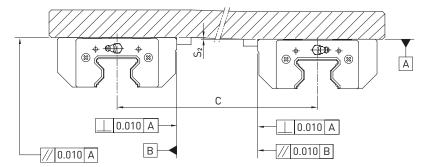
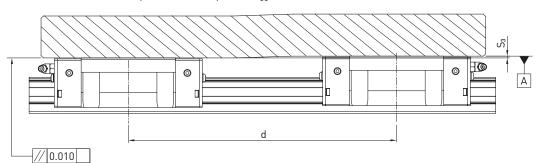

- S₁ Tolleranza max. in altezza [mm]
- C Distanza tra le rotaie [mm]
- K Coefficiente di tolleranza dell'altezza
- T_H Tolleranza dell'altezza H secondo la Tabella 3.53

Tabella 3.55 Coefficiente di tolleranza d	ell'altezza (K)		
Serie/Taglia	Classe di precarico		
	ZO	ZA	ZB
CG_15 - CG_45	2.8 × 10 ⁻⁴	1.7 × 10 ⁻⁴	1.2 × 10 ⁻⁴

Tolleranza della differenza in altezza della superficie di montaggio del carrello

- La tolleranza dell'altezza della superficie di riferimento col montaggio parallelo di due o più carrelli (S₂)
 - 0.010 Requisiti di precisione per tutte le superfici di riferimento per il montaggio del carrello



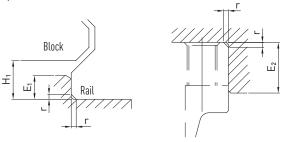
F 3.8

$$S_2 = C \times K$$

- S₂ Tolleranza max. in altezza [mm]
- C Interasse tra le rotaie [mm]
- K Coefficiente di tolleranza in altezza
- o La tolleranza in altezza della superficie di riferimento col montaggio in parallelo di due o più carrelli (S_3)

Requisiti di precisione per tutte le superfici di riferimento per il montaggio del carrello

F 3.9


$$S_3 = d \times K$$

- S_3 Tolleranza max. in altezza [mm]
- d Interasse tra i carrelli [mm]
- K Coefficiente di tolleranza dell'altezza

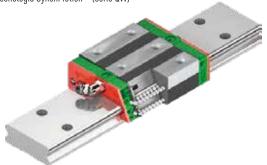
Tabella 3.56 Coefficiente di tolleranza d	ell'altezza (K)	
Serie/Taglia	Tipo di carico	
	CG_C	CG_H
CG_15 - CG_45	4.2 × 10 ⁻⁵	3.0 × 10 ⁻⁵

Serie CG, Serie WE/QW

3.3.13 Altezze delle battute e raggi di raccordoSe le altezze e i raccordi degli spallamenti delle superficie di montaggio non sono corretti, la precisione risulterà diversa da quella prevista e si verificherà un'interferenza con il profilo della rotaia o del carrello. Rispettando le altezze e i raccordi previsti per gli spallamenti è possibile eliminare eventuali errori di installazione.

Tabella 3.57 Altezze delle battut	e e raggi di raccordo			
Serie/Taglia	Raggio max smusso r	Altezza spallamento di riferimento rotaia E ₁	Altezza spallamento di riferimento carrello E ₂	Luce libera sotto il carrello H ₁
CG_15	0.5	3.0	4.0	4.3
CG_20	0.5	3.5	5.0	4.6
CG_25	1.0	5.0	5.0	6.1
CG_30	1.0	5.0	5.0	7.0
CG_35	1.0	6.0	6.0	7.6
CG_45	1.0	8.0	8.0	9.5

Unità: mm


3.4 Serie WE/QW

3.4.1 Caratteristiche delle guide lineari serie WE e QW

Le guide lineari HIWIN serie WE si basano sulla consolidata tecnologia HIWIN. Grazie alla particolare larghezza delle rotaie e alla configurazione ribassata è nata una guida compatta con elevata resistenza ai momenti torcenti.

3.4.2 Struttura serie WE/QW

- O Guida a 4 ricircoli di sfere
- Angolo di contatto di 45°
- Gli elementi di trattenuta delle sfere impediscono la caduta delle sfere stesse durante lo smontaggio del carrello
- o ridotta altezza di installazione
- O Rotaie larghe per una elevata resistenza a torsione
- O Ampia superficie di montaggio per il carrello
- Tecnologia SynchMotion™ (serie QW)

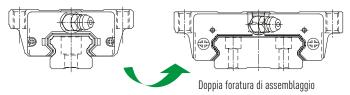
Struttura serie WE

Vantaggi:

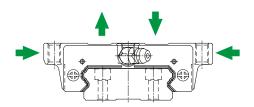
- O Costruzione compatta con un'elevata capacità a momento
- O Massima efficenza di rendimento grazie a perdite di attrito minime

I modelli della serie QW con tecnologia SynchMotion™ offrono tutti i vantaggi della serie WE standard. Inoltre, grazie al movimento controllato delle sfere distanziate dalla gabbia, sono caratterizzati da un miglioramento della scorrevolezza intesa come linearità e fluidità di movimento, da velocità maggiori, da intervalli di lubrificazione più lunghi ed una minore rumorosità. Poiché le dimensioni di montaggio dei carrelli QW sono identiche a quelle dei carrelli WE, possono essere montati anche sulla rotaia WER e quindi sono esattamente intercambiabili.

Per ulteriori informazioni, s.v. Pagina 24

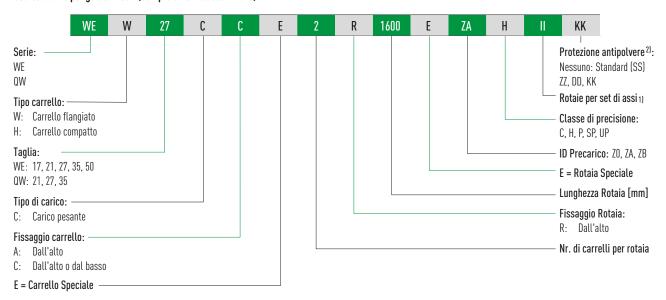


Struttura serie QW

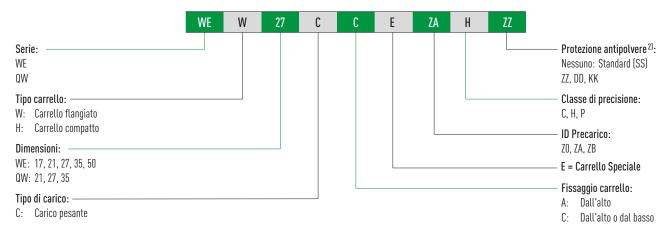

Ulteriori vantaggi serie QW:

- Miglioramento della scorrevolezza
- Ottimizzato per velocità e accellerazioni superiori
- O Minor frequenza di lubrificazione
- O Basso livello di rumorosità
- O Maggiori capacità di carico dinamico

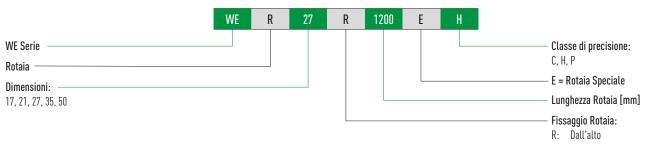
- o L'ampia superficie di montaggio del carrello resiste a momenti più elevati
- o La disposizione a 45° dei ricircoli consente un elevato livello di sollecitazioni da tutte le direzioni



Serie WE/QW


3.4.3 Codici d'ordine per le serie WE/QW

Le guide lineari WE/QW si suddividono in modelli montati e non montati. Le dimensioni di entrambi i modelli sono identiche. La differenza fondamentale risiede nel fatto che nel caso dei modelli non montati i carrelli e le rotaie possono essere sostituiti liberamente.Carrello e rotaie possono essere ordinati separatamente e montati dal cliente. La precisione arriva alla classe P.


Codice ordine per guide lineari (completamente assemblate)

Codice d'ordine per carrello (non montato)

Order code for rail (unmounted)

Nota:

¹⁾ Il numero romano "Il" indica il numero di guide di cui è previsto il parallelo e significa che un elemento dell'articolo sopra descritto si riferisce unicamente ad una guida. Nel caso di rotaie singole non è indicata alcuna cifra. Di default, le rotaie giuntate sono consegnate con giunzioni sfalsate.

²⁾ Panoramica dei singoli sistemi di tenuta a pagina 22

3.4.4 Tipi di carrello

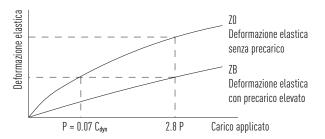
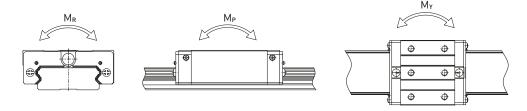

HIWIN offre carrelli compatti e flangiati per ciascun modello di guida.

Tabella 3.58 Tipi	di carrello				
Tipo	Serie/ Dimensione	Struttura	Tolleranza [mm]	Lunghezza rotaia [mm]	Applicazioni caratteristiche
Tipo compatto	WEH-CA QWH-CA		17 – 50	100 - 4.000	 Automazione Movimentazione industriale Tecnologie di misurazione e controllo qualità Industria dei semiconduttori Macchine per stampaggio a iniezione
Carrello flangiato	WEW-CC QWW-CC				O Assi lineari

3.4.5 Precarico

Definizione

E' possibile applicare un precarico ad ogni tipo di guida in base alle dimensioni delle sfere. La curva mostra che la rigidità viene raddoppiata quando si applica un precarico. La serie WE/QW offre tre classi di precarico standard, per varie applicazioni e condizioni.



Precarico

Tabella 3.59 ID Pre	carico			
ID	Precarico		Applicazione	Sample applications
ZO	Precarico leggero	0 - 0.02 C _{dyn}	Direzione di carico costante, urti di ridotta entità, precisione contenuta	Tecnica di trasporto, Confezionatrici automatiche Asse X-Y per macchine industriali Saldatrici
ZA	Precarico medio	0.03 - 0.05 C _{dyn}	Elevate precisioni richieste	Macchine utensili Assi Z in macchine industriali Macchine per elettroerosione Torni NC Banchi X-Y di precisione Tecnologie per la misurazione
ZB	Precarico alto	0.06 - 0.08 C _{dyn}	Elevata rigidezza strutturale richiesta, presenza di urti e vibrazioni	Macchine utensili Rettificatrici Torni NC Frese orizzontali e verticali Asse Z in macchine utensili, Macchine da taglio ad elevate prestazioni

Serie WE/QW

3.4.6 Capacità di carico e momenti

Serie/	Capacità di carico	Capacità di carico	Momento d	linamico [Nm]		Momento s	to statico [Nm]			
Taglia	dinamico C _{dyn} [N] ¹⁾	statico C ₀ [N]	M _R	M _P	Мү	Mor	M _{OP}	M _{OY}		
WE_17C	5,230	9,640	82	34	34	150	62	62		
WE_21C	7,210	13,700	122	53	53	230	100	100		
QW_21C	9,000	12,100	156	67	67	210	90	90		
WE_27C	12,400	21,600	242	98	98	420	170	170		
QW_27C	16,000	22,200	303	144	144	420	200	200		
WE_35C	29,800	49,400	893	405	405	1,480	670	670		
WE_35C	36,800	49,200	1,129	486	486	1,510	650	650		
WE_50C	61,520	97,000	2,556	1,244	1,244	4,030	1,960	1,960		

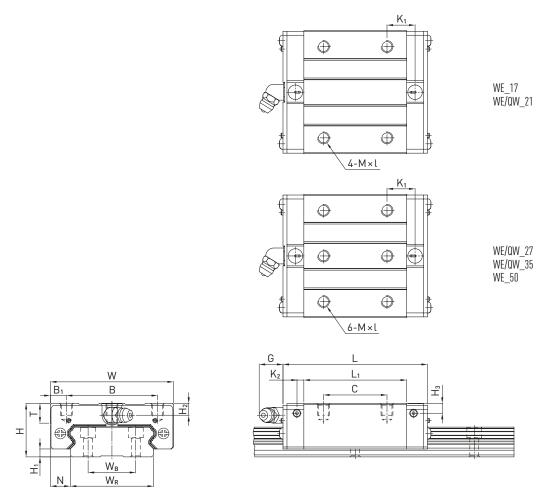
3.4.7 Rigidità

La rigidità dipende dal precarico.

Con la formula F 3.10 è possibile determinare la deformazione a seconda della rigidità.

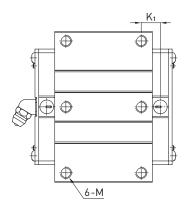
F 3.10

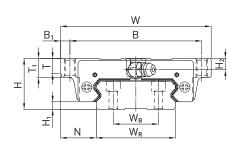
$$\delta = \frac{P}{k}$$

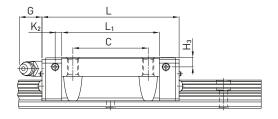

- $\delta \quad \text{Deformazione} \, [\mu \text{m}]$
- P Carico di servizio [N]
- k Rigidità [N/μm]

Classe di carico	Serie/	Rigidità in funzione del precarico.								
	Taglia	ZO	ZA	ZB						
Carico pesante	WE_17C	128	166	189						
	WE_21C	154	199	228						
	QW_21C	140	176	200						
	WE_27C	187	242	276						
	QW_27C	183	229	260						
	WE_35C	281	364	416						
	QW_35C	277	348	395						
	WE_50C	428	554	633						

3.4.8 Dimensioni dei carrelli WE/QW

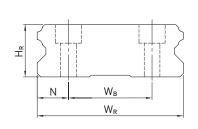

3.4.8.1 WEH/QWH

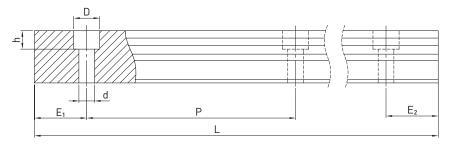



Tabella 3.62	Dime	nsioni d	el carre	llo															
Serie/ Taglia		nsione d aggio [n		Dimer												Coefficiente di carico [N]			
	Н	H ₁	N	W	/ B B ₁ C L ₁ L K ₁ K ₂ G M×L T H ₂ H ₃ C _{dyn}									C _{dyn}	Co				
WEH17CA	17	2.5	8.5	50	29	10.5	15	35.0	50.6	_	3.10	4.9	M4 × 5	6.0	4.0	3.0	5,230	9,640	0.12
WEH21CA	21	3.0	8.5	54	31	11.5	19	41.7	59.0	14.68	3.65	12.0	M5 × 6	8.0	4.5	4.2	7,210	13,700	0.20
QWH21CA	21	3.0	8.5	54	31	11.5	19	41.7	59.0	14.68	3.65	12.0	M5 × 6	8.0	4.5	4.2	9,000	12,100	0.20
WEH27CA	27	4.0	10.0	62	46	8.0	32	51.8	72.8	14.15	3.50	12.0	M6 × 6	10.0	6.0	5.0	12,400	21,600	0.35
QWH27CA	27	4.0	10.0	62	46	8.0	32	56.6	73.2	15.45	3.15	12.0	M6 × 6	10.0	6.0	5.0	16,000	22,200	0.35
WEH35CA	35	4.0	15.5	100	76	12.0	50	77.6	102.6	18.35	5.25	12.0	M8 × 8	13.0	8.0	6.5	29,800	49,400	1.10
QWH35CA	35	4.0	15.5	100	76	12.0	50	73.0	107.0	21.5	5.50	12.0	M8 × 8	13.0	8.0	6.5	36,800	49,200	1.10
WEH50CA	50	7.5	20.0	130	100	15.0	65	112.0	140.0	28.05	6.00	12.9	M10 × 15	19.5	12.0	10.5	61,520	97,000	3.16

Per le dimensioni della rotaia, s.v Pagina 83, per raccordi standard e optional di lubrificazione vedi Pagina 126

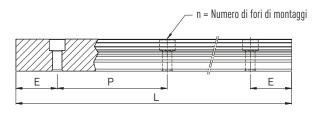
3.4.8.2 WEW/QWW


Tabella 3.63	Dim	ensioni	del car	rello																
Serie/ Taglia		nsione d aggio [n		Dime	nsioni d	lel carre	ello [m	m]										Coefficiente di carico [N]		Peso [kg]
	Н	H ₁	N	W	B B ₁ C L ₁ L K ₁ K ₂ G M T T ₁ H ₂ H ₃ C _{dy}										C _{dyn}	C ₀				
WEW17CC	17	2.5	13.5	60	53	3.5	26	35.0	50.6	_	3.10	4.9	M4	5.3	6	4.0	3.0	5,230	9,640	0.13
WEW21CC	21	3.0	15.5	68	60	4.0	29	41.7	59.0	9.68	3.65	12.0	M5	7.3	8	4.5	4.2	7,210	13,700	0.23
QWW21CC	21	3.0	15.5	68	60	4.0	29	41.7	59.0	9.68	3.65	12.0	M5	7.3	8	4.5	4.2	9,000	12,100	0.23
WEW27CC	27	4.0	19.0	80	70	5.0	40	51.8	72.8	10.15	3.50	12.0	M6	8.0	10	6.0	5.0	12,400	21,600	0.43
QWW27CC	27	4.0	19.0	80	70	5.0	40	56.6	73.2	15.45	3.15	12.0	M6	8.0	10	6.0	5.0	16,000	22,200	0.43
WEW35CC	35	4.0	25.5	120	107	6.5	60	77.6	102.6	13.35	5.25	12.0	M8	11.2	14	8.0	6.5	29,800	49,400	1.26
QWW35CC	35	4.0	25.5	120	107	6.5	60	83.0	107.0	21.50	5.50	12.0	M8	11.2	14	8.0	6.5	36,800	49,200	1.26
WEW50CC	50	7.5	36.0	162	144	9.0	80	112.0	140.0	20.55	6.00	12.9	M10	14.0	18	12.0	10.5	61,520	97,000	3.71


Per le dimensioni della rotaia, s.v Pagina 83, per raccordi standard e optional di lubrificazione vedi Pagina 126

3.4.9 Dimensioni della rotaia WE

3.4.9.1 Dimensioni WER_R


Tabella 3.64	fabella 3.64 Dimensioni della rotaia WER_R														
Serie/	Vite di montaggio	Dimen	nsioni de	lla rotai	a [mm]				Lungh.max.	Lungh. max. $E_1 = E_2$	E _{1/2} min	E _{1/2} max	Peso		
Taglia	per rotaia [mm]	W_R	W _B	H _R	D	h	d	P	[mm]	[mm]	[mm]	[mm]	[kg/m]		
WER17R	M4 × 12	33	18	9.3	7.5	5.3	4.5	40	4,000	3,960	6	34	2.2		
WER21R	M4 × 12	37	22	11.0	7.5	5.3	4.5	50	4,000	3,950	6	44	3.0		
WER27R	M4 × 16	42	24	15.0	7.5	5.3	4.5	60	4,000	3,900	6	54	4.7		
WER35R	M6 × 20	69	40	19.0	11.0	9.0	7.0	80	4,000	3,920	8	72	9.7		
WER50R	M8 × 25	90	60	24.0	14.0	12.0	9.0	80	4,000	3,920	9	71	14.6		

Note

- 1. Senza indicazione della dimensione $E_{1/2}$, considerando $E_{1/2}$ min è possibile determinare il numero massimo di fori di montaggio.
- 2. Le rotaie sono tagliate alla lunghezza desiderata. Senza alcuna indicazione della dimensione $E_{1/2}$ saranno eseguite simmetriche.

3.4.9.2 Calcolo della lunghezza delle rotaie

HIWIN offre rotaie con lunghezze personalizzate. Per evitare che l'ultima parte della rotaia diventi instabile, i valori di E non devono essere superiori alla metà della lunghezza del passo (P). Contemporaneamente, il valore $E_{1/2}$ deve essere compreso tra $E_{1/2}$ min e $E_{1/2}$ max in modo da non andare in interferenza con il foro di montaggio.

F3.11
$$L = (n-1) \times P + E_1 + E_2$$

- L Lunghezza totale della rotaia [mm]
- n Numero di fori di montaggio
- P Distanza tra due fori [mm]
- E_{1/2} Distanza tra il centro dell'ultimo foro di montaggio e l'estremità della rotaia [mm]

Serie WE/QW

3.4.9.3 Coppie di serraggio delle viti di ancoraggio

Il serraggio insufficiente delle viti di fissaggio compromette la precisione e la funzione delle guide lineari.È consigliabile utilizzare le seguenti coppie di serraggio, a seconda delle dimensioni delle viti.

Tabella 3.65 Tightening to	Tabella 3.65 Tightening torques of the mounting bolts according to ISO 4762-12.9						
Serie/Taglia	Dimensione vite	Coppia [Nm]	Serie/Taglia	Dimensione vite	Coppia [Nm]		
WE_17	M4	4	WE/QW_35	M6	13		
WE/QW_21	M4	4	WE_50	M8	30		
WE/QW_27	M4	4					

3.4.9.4 Tappi per i fori di montaggio delle rotaie

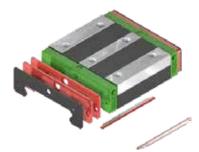
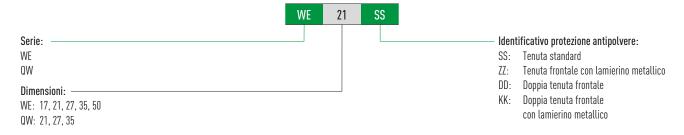

I tappi servono a impedire che trucioli e sporco entrino nei fori di montaggio. I tappi standard in plastica sono forniti unitamente alle singole rotaie. Ulteriori tappi opzionali devono essere ordinati separatamente.

Tabella 3.66 Tappi p	per i fori di montag	gio delle rotaie						
Rotaia	Vite	Numero ar	Numero articolo					Altezza H [mm]
		Plastica		Ottone		Acciaio		
		Gmbh	TW	Gmbh	Gmbh			
WER17R	M4	5-002218	950002C1	5-001344	95000FA1	_	7.5	1.2
WER21R	M5	5-002220	950003D2	5-001350	95000GA1	5-001352	9.5	2.5
WER27R	M6	5-002221	950004D2	5-001355	95000HA1	5-001357	11.0	2.8
WER35R	M8	5-002222	950005D2	5-001360	95000IA1	5-001362	14.0	3.5
WER50R	M8	5-002222	950005D2	5-001360	95000IA1	5-001362	14.0	3.5

3.4.10 Sistemi di tenuta

Per i carrelli HIWIN sono disponibili diversi sistemi di tenuta. Una panoramica è disponibile anche a pagina 22. Nella tabella seguente è riportata la lunghezza complessiva dei carrelli con i diversi sistemi di tenuta. Sono disponibili sistemi di tenutaper queste grandezze.


Tabella 3.67 Lunghezza comple	fabella 3.67 Lunghezza complessiva dei carrelli con diversi sistemi di tenuta						
Serie/							
Taglia	SS	DD	7.7	KK			
WE_17C	50.6	53.8	52.6	55.8			
WE/QW_21C	59.0	63.0	61.0	65.0			
WE/QW_27C	72.8	76.8	74.8	78.8			
WE/QW_35C	102.6	106.6	105.6	109.6			
WE_50C	140.0	145.0	142.0	147.0			

Unità: mm

3.4.11 Codifica dei set di tenute

I set di tenute sono sempre forniti completi di viti per il montaggio e includono i pezzi necessari adeguati oltre alla tenuta standard.

3.4.12 Attrito

La tabella riporta la resistenza massima all'avanzamento delle singole tenute frontali.

A seconda della classificazione della guarnizione (SS, ZZ, DD, KK) sarà necessario moltiplicare in modo corrispondente il valore.

I valori indicati si intendono validi per quanto riguarda carrelli su rotaie senza trattamento.

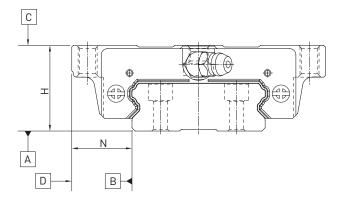

Su rotaie con trattamento si vengono a creare forze di attrito più elevate.

Tabella 3.68 Resistenza all'avanzamento delle tenute					
Serie/Taglia	Attrito [N]	Serie/Taglia	Attrito [N]		
WE_17	1.2	WE/QW_35	3.9		
WE/QW_21	2.0	WE_50	3.9		
WE/QW_27	2.9				

Serie WE/QW

3.4.13 Tolleranze in funzione della classe di precisione

Le serie WE e QW e sono disponibili in cinque differenti classi di precisione, a seconda del parallelismo tra carrelli e rotaie e della precisione della altezza H e della larghezza N. La scelta è determinata dai requisiti della macchina in cui si applicano le guide lineari. HIWIN srl gestisce nella propria sede fino alla classe P.

3.4.14 Parallelismo

Parallelismo tra la superficie di battuta del carrello D e della rotaia B e parallelismo tra la superficie superiore del carrello C e la superficie d'appoggio della rotaia A. La misurazione è considerata con rotaia montata in condizioni ottimali e al centro di ogni carrello.

Lunghezza Rotaia [mm]	Classe di precisione							
	С	Н	Р	SP	UP			
- 100	12	7	3	2	2			
100 - 200	14	9	4	2	2			
200 - 300	15	10	5	3	2			
300 - 500	17	12	6	3	2			
500 - 700	20	13	7	4	2			
700 - 900	22	15	8	5	3			
900 – 1100	24	16	9	6	3			
100 - 1500	26	18	11	7	4			
1500 – 1900	28	20	13	8	4			
1900 – 2500	31	22	15	10	5			
2500 – 3100	33	25	18	11	6			
3100 – 3600	36	27	20	14	7			
3600 – 4000	37	28	21	15	7			

3.4.14.1 Precisione - altezza e larghezza

Tolleranza dell'altezza H

Massima deviazione assoluta dell'altezza H, misurata tra la superficie superiore del carrello C e la superficie inferiore della rotaia A per qualsiasi posizione del carrello sulla rotaia.

Variazione di altezza H

Massima deviazione relativa dell'altezza H tra due o più carrelli sulla stessa rotaia o su rotaie in parallelo, misurata nella medesima posizione della rotaia.

Tolleranza della larghezza N

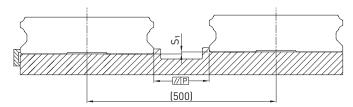
Massima deviazione assoluta della larghezza N, misurata tra le superfici in battuta del carrello D e della rotaia B per qualsiasi posizione del carrello sulla rotaia.

Variazione della larghezza N

Massima deviazione relativa della larghezza N tra due o più carrelli sulla stessa rotaia, misurata nella medesima posizione della rotaia.

Tabella 3.70 Tolleranze di	altezza e larghezza				
Serie/dimensioni	Classe di precisione	Tolleranza dell'altezza H	Tolleranza larghezza N	Variazione di altezza H	Variazione larghezza N
WE_17, 21	C (Normal)	± 0.1	± 0.1	0.02	0.02
QW_21	H (High)	± 0.03	± 0.03	0.01	0.01
	P (Precision)	0/- 0.031)	0/- 0.031)	0.006	0.006
	SP (Super precision)	0/- 0.015	0/- 0.015	0.004	0.004
	UP (Ultra precision)	0/- 0.008	0/- 0.008	0.003	0.003
WE_27, 35	C (Normal)	± 0.1	± 0.1	0.02	0.03
QW_27, 35	H (High)	± 0.04	± 0.04	0.015	0.015
	P (Precision)	0/- 0.041)	0/- 0.041)	0.007	0.007
	SP (Super precision)	0/- 0.02	0/- 0.02	0.005	0.005
	UP (Ultra precision)	0/- 0.01	0/- 0.01	0.003	0.003
WE_50	C (Normal)	± 0.1	± 0.1	0.03	0.03
	H (High)	± 0.05	± 0.05	0.02	0.02
	P (Precision)	0/- 0.05 ¹⁾	0/- 0.051)	0.01	0.01
	SP (Super precision)	0/-0.03	0/- 0.03	0.01	0.01
	UP (Ultra precision)	0/-0.02	0/- 0.02	0.01	0.01

Unità: mm

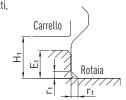

¹⁾ Guida lineare completamente assemblata

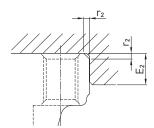
Serie WE/QW, Serie MG

3.4.14.2 Tolleranze ammissibili delle superfici di montaggio

Per sfruttare al meglio la precisione, rigidità e durata delle guide WE e QW è necessario rispettare le tolleranze di lavorazione delle superfici.

Parallelismo della superficie di riferimento (P):




Serie/Taglia	Classe di precarico	Classe di precarico					
	Z 0	ZA	ZB				
WE_17	20	15	9				
WE/QW_21	25	18	9				
WE/QW_27	25	20	13				
WE/QW_35	30	22	20				
WE_50	40	30	27				

Serie/Taglia	Classe di precarico	Classe di precarico					
	ZO	ZA	ZB				
WE_17	65	20	-				
WE/QW_21	130	85	45				
WE/QW_27	130	85	45				
WE/QW_35	130	85	70				
WE_50	170	110	90				

3.4.15 Altezze delle battute e raggi di raccordo

Se le altezze e i raccordi degli spallamenti delle superficie di montaggio non sono corretti, la precisione risulterà diversa da quella prevista e si verificherà un'interferenza con il profilo della rotaia o del carrello. Al fine di evitare problemi in sede di montaggio è necessario attenersi alle seguenti altezze delle battute e ai seguenti raggi consigliati per gli smussi.

Tabella 3.73 Altezze delle battut	e e raggi di racc	ordo			
Serie/Taglia	Raggio max. smusso r ₁	Raggio max. smusso r ₂	Altezza spallamento di riferimento rotaia E ₁	Altezza spallamento di riferimento carrello E 2	Luce libera sotto il carrello H ₁
WE_17	0.4	0.4	2.0	4.0	2.5
WE/QW_21	0.4	0.4	2.5	5.0	3.0
WE/QW_27	0.5	0.5	3.0	7.0	4.0
WE/QW_35	0.5	0.5	3.5	10.0	4.0
WE_50	0.8	0.8	6.0	10.0	7.5
Unità: mm					

88

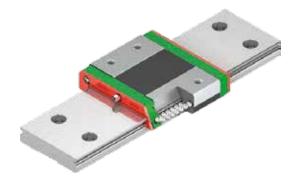

3.5 Serie MG

3.5.1 Caratteristiche delle guide lineari serie MG

Le guide lineari HIWIN serie MGN si basano sulla consolidata tecnologia HIWIN. Il profilo ad arco gotico delle piste sostiene il carico in tutte le direzioni ed è particolarmente rigido e preciso. Grazie alla forma costruttiva compatta e leggera, è particolarmente adeguata ad essere utilizzata in dispositivi di ridotte dimensioni.

3.5.2 Struttura serie MGN

- O Guida a 2 ricircoli di sfere
- Profilo ad arco gotico delle piste
- o Carrello e sfere in acciaio inossidabile
- Rotaie in acciaio inox
- Forma costruttiva compatta e leggera
- Le sfere vengono separate dagli elementi di trattenuta miniaturizzati
- Raccordo di lubrificazione disponibile per MGN15
- o Elementi di tenuta
- I modelli intercambiabili sono disponibili in varie classi di precisione


Struttura serie MGN

3.5.3 Caratteristiche delle guide lineari serie MGW

Le guide lineari HIWIN serie MGW si basano sulla consolidata tecnologia HIWIN. Il profilo ad arco gotico delle piste sostiene il carico in tutte le direzioni ed è particolarmente rigido e preciso. Grazie alla rotaia più larga, rispetto alla serie MGN, la serie MGW è in grado di rispondere molto meglio ai carichi ai momenti torcenti.

3.5.4 Struttura serie MGW

- o Guida a 2 ricircoli di sfere
- Profilo ad arco gotico delle piste
- O Carrello e sfere in acciaio inossidabile
- O Rotaie in acciaio standard o inox
- O Forma costruttiva compatta e leggera
- O Le sfere vengono trattenute da un detentore in miniatura
- Raccordo di lubrificazione disponibile per MGW15
- Tenuta di chiusura
- I modelli intercambiabili sono disponibili in varie classi di precisione

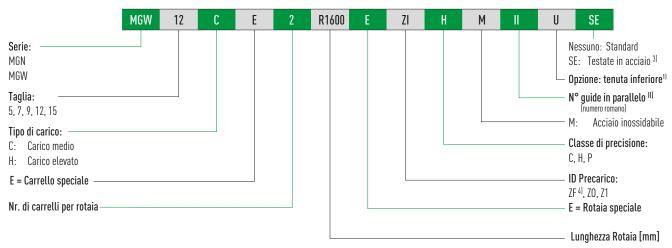
Struttura serie MGW

3.5.5 Applicazioni serie MG

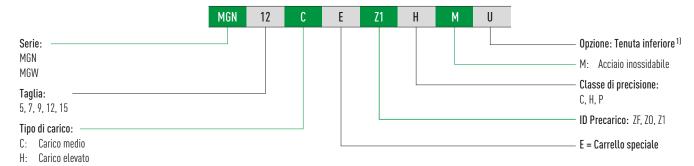
Le serie MGN e MGW possono essere utilizzate negli ambiti più disparati, ad esempio nell'industria dei semiconduttori, nella produzione di componenti di schede elettroniche, nella tecnologia medicale, nell'automazione e in altri contesti che necessitino di guide miniaturizzate.

Serie MG

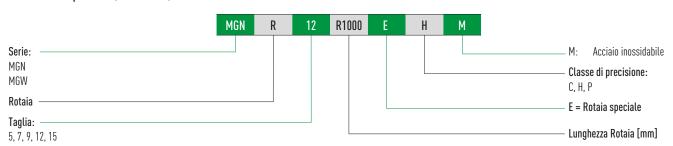
3.5.6 Codici d'ordine per la serie MG


Le guide lineari MGN e MGW possono essere gestite assemblate o intercambiabili.

Le dimensioni di entrambi i modelli sono identiche. La differenza principale consiste nel


fatto che nel caso dei modelli intercambiabili i carrelli e le rotaie possono essere sostituiti e gestiti liberamente.

Carrelli e rotaie possono essere ordinati separatamente e montati dal cliente.


Codice ordine per guide lineari (completamente assemblate)

Codice d'ordine per carrello (non montato)

Codice d'ordine per rotaia (non montata)

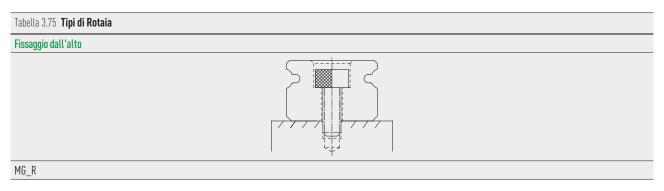
Nota:

¹⁾Disponibile per le serie MGN e MGW nelle misure 12 e 15.

Il l numero romano indica il numero di guide di cui è previsto il parallelo e significa che un elemento dell'articolo sopra descritto si riferisce numericamente ad una guida.

Nel caso di rotaie singole non è indicata alcuna cifra. Di default, le rotaie giuntate sono consegnate con giunzioni sfalsate.

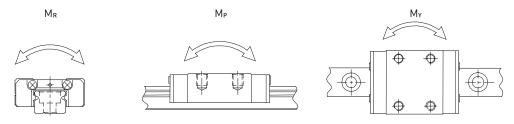
^{3]} Disponibile per MGN 7, 9, 12, 15 e MGW 12, 15.


⁴⁾ Non disponibile per rotaie in coppia e per MG 5

3.5.7 Tipi di carrello

Tabella 3.74 Tipi	di carrello				
Туре	Serie/ Taglia	Struttura	Tolleranza [mm]	Lungh. rotaia [mm]	Applicazioni caratteristiche
Variante stretta	MGN-C MGN-H		8-16	250 – 2,000	 Tecnica di automazione Apparecchiature di trasporto ad alta velocità Strumenti di misurazione di precisione Apparecchiature di
Variante larga	MGW-C MGW-H		9 – 16		produzione di semiconduttori

3.5.8 Tipi di Rotaia


Serie MG

3.5.9 Precarico

Le serie MGN/MGW offrono tre precarichi, adatti ad applicazioni e condizioni diverse

ID	Precarico	Classe di precisione
ZF	Lieve gioco: 4 – 10µm	C, H
Z0	Nessun gioco, precarico molto lieve	C – P
Z1	Lieve precarico: 0 - 0.02 Gyn	C – P

3.5.10 Capacità di carico e momenti

Serie/	Capacità carico dinamico					Momento statico [Nm]		
Taglia	Base C _{dyn} [N] ^{1]}	C ₀ [N]	M _R	M _P	Мү	Mor	M _{OP}	M _{OY}
MGN05C	540	840	1.3	0.8	0.8	2.0	1.3	1.3
MGN05H	670	1,080	1.6	1.4	1.4	2.6	2.3	2.3
MGN07C	980	1,245	3.0	2.0	2.0	4.7	2.8	2.8
MGN07H	1,370	1,960	5.0	3.0	3.0	7.6	4.8	4.8
MGN09C	1,860	2,550	8.0	5.0	5.0	11.8	7.4	7.4
MGN09H	2,550	4,020	12.4	11.8	11.8	19.6	18.6	18.6
MGN12C	2,840	3,920	18.0	10.0	10.0	25.5	13.7	13.7
MGN12H	3,720	5,880	24.0	23.0	23.0	38.2	36.3	36.3
MGN15C	4,610	5,590	37.0	18.0	18.0	45.1	21.6	21.6
MGN15H	6,370	9,110	52.0	41.0	41.0	73.5	57.8	57.8
MGW05C	680	1,180	3.2	1.6	1.6	5.5	2.7	2.7
MGW07C	1,370	2,060	10.0	4.0	4.0	15.7	7.1	7.1
MGW07H	1,770	3,140	13.0	8.0	8.0	23.5	15.5	15.5
MGW09C	2,750	4,120	27.0	12.0	12.0	40.1	18.0	18.0
MGW09H	3,430	5,890	32.0	20.0	20.0	54.5	34.0	34.0
MGW12C	3,920	5,590	50.0	19.0	19.0	70.3	27.8	27.8
MGW12H	5,100	8,240	64.0	36.0	36.0	102.7	57.4	57.4
MGW15C	6,770	9,220	149.0	42.0	42.0	199.3	56.7	56.7
MGW15H	8,930	13,380	196.0	80.0	80.0	299.0	122.6	122.6

 $^{^{1]}}$ Capacità di carico dinamica per una distanza percorsa di $50.000~\mathrm{m}$

3.5.11 Rigidità

La rigidità dipende dal precarico.Con la formula F 3.12 è possibile determinare la deformazione a seconda della rigidità.

F 3.12

$$\delta = \frac{P}{k}$$

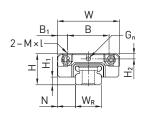
 $\begin{array}{ll} \delta & \text{ Deformazione [}\mu\text{m}\text{]} \\ \text{P} & \text{ Carico di servizio [N]} \end{array}$

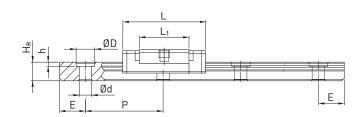
k Rigidità [N/μm]

Tabella 3.7 Radial Rigidità for Serie MGN							
Classe di carico	Serie/	Rigidità in funzione del precarico					
	Taglia	ZO	Z1				
Carico medio	MGN07C	26	33				
	MGN09C	37	48				
	MGN12C	44	56				
	MGN15C	57	74				
Carico elevato	MGN07H	39	51				
	MGN09H	56	73				
	MGN12H	63	81				
	MGN15H	87	113				

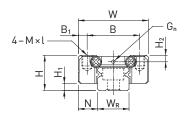
Unità: N/µm

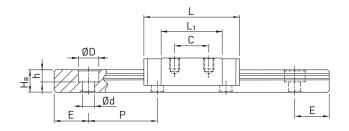
Classe di carico	Serie/	Rigidità in funzione del pre	Rigidità in funzione del precarico					
	Taglia	ZO	Z1					
Carico medio	MGW07C	38	49					
	MGW09C	55	71					
	MGW12C	63	81					
	MGW15C	78	101					
arico elevato	MGW07H	54	70					
	MGW09H	74	95					
	MGW12H	89	114					
	MGW15H	113	145					

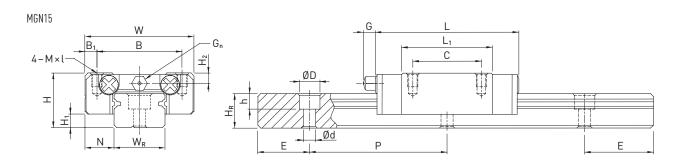

GW-IT-20-06 93


Serie MG

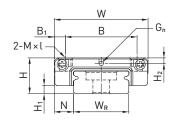
3.5.12 Dimensioni del carrello MG

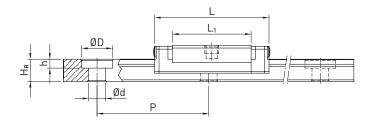

3.5.12.1 MGN

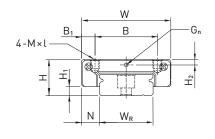

MGN05

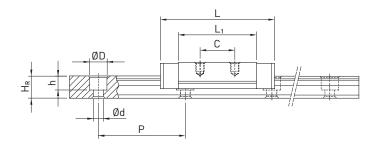


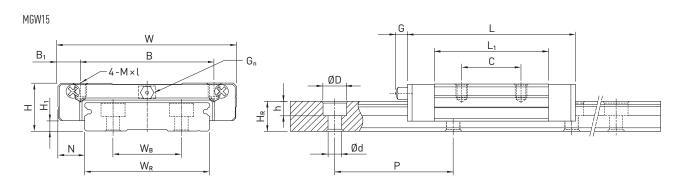
MGN07, MGN09, MGN12


Tabella 3.80	Dimen	sioni del	carrello	rello												
Serie/ Taglia	Dimen: [mm]	sioni di m	nontaggio	Dimen	sioni del	carrello	[mm]							Coefficie carico [N		Peso [kg]
	Н	H ₁	N	W	В	B ₁	С	L ₁	L	G	Gn	M×l	H ₂	C _{dyn}	Co	
MGN05C	6	1.5	3.5	12	8	2.0	_	9.6	16.0	-	Ø 0.8	M2 × 1.5	1.0	540	840	0.008
MGN05H							_	12.6	19.0					670	1,080	0.010
MGN07C	8	1.5	5.0	17	12	2.5	8	13.5	22.5	_	Ø 1.2	M2 × 2.5	1.5	980	1,245	0.010
MGN07H							13	21.8	30.8					1,372	1,960	0.020
MGN09C	10	2.0	5.5	20	15	2.5	10	18.9	28.9	-	Ø1.4	M3 × 3	1.8	1,860	2,550	0.020
MGN09H							16	29.9	39.9					2,550	4,020	0.030
MGN12C	13	3.0	7.5	27	20	3.5	15	21.7	34.7	_	Ø 2	M3 × 3.5	2.5	2,840	3,920	0.030
MGN12H							20	32.4	45.4					3,720	5,880	0.050
MGN15C	16	4.0	8.5	32	25	3.5	20	26.7	42.1	4.5	M3	M3 × 4	3.0	4,610	5,590	0.060
MGN15H							25	43.4	58.8					6,370	9,110	0.090

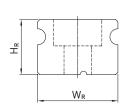

Per le dimensioni della rotaia, s.v Pagina 96, per raccordi standard e optional di lubrificazione vedi Pagina 126

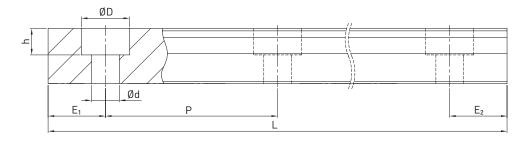

3.5.12.2 MGW


MGW05



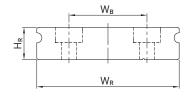
MGW07, MGW09, MGW12


Tabella 3.81	Dimer	nsioni de	el carrello	lo												
Serie/ Taglia	Dimen [mm]	sioni di r	montaggio	Dimen	sioni del	carrello [mm]			-				Coefficienti di carico [N]		Peso [kg]
	Н	H ₁	N	W	В	B ₁	С	L ₁	L	G	Gn	M×l	H ₂	C _{dyn}	Co	
MGW05C	6.5	1.5	3.5	17	13	2.0	-	14.1	20.5	_	Ø1.2	M2.5 × 1.5	1.00	680	1,180	0.02
MGW07C	9.0	1.9	5.5	25	19	3.0	10	21.0	31.2	_	Ø1.2	M3 × 3	1.85	1,370	2,060	0.02
MGW07H							19	30.8	41.0					1,770	3,140	0.03
MGW09C	12.0	2.9	6.0	30	21	4.5	12	27.5	39.3	_	Ø1.4	M3 × 3	2.40	2,750	4,120	0.04
MGW09H					23	3.5	24	38.5	50.7					3,430	5,890	0.06
MGW12C	14.0	3.4	8.0	40	28	6.0	15	31.3	46.1	_	Ø 2	M3 × 3.6	2.80	3,920	5,590	0.07
MGW12H							28	45.6	60.4					5,100	8,240	0.10
MGW15C	16.0	3.4	9.0	60	45	7.5	20	38.0	54.8	5.2	M3	M4 × 4.2	3.20	6,770	9,220	0.14
MGW15H							35	57.0	73.8					8,930	13,380	0.22


Per le dimensioni della rotaia, s.v Pagina 96, per raccordi standard e optional di lubrificazione vedi Pagina 126

Serie MG

3.5.13 Dimensioni della rotaia MG


3.5.13.1 Dimensioni MGN_R

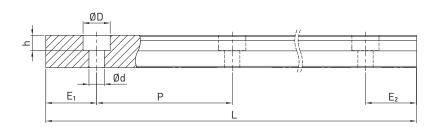
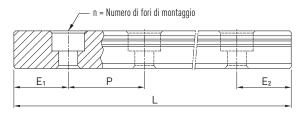


Tabella 3.82	Dimensioni della rot	aia MGN	N_R									
Serie/	Vite di montaggio	Dimensioni della rotaia [mm]						Lunghezza max.	Lunghezza max.	E _{1/2} min	E _{1/2} max	Peso
Taglia	per rotaia [mm]	W _R	H _R	D	h	d	Р	[mm]	$E_1 = E_2 [mm]$	[mm]	[mm]	[kg/m]
MGNR05R	M2 × 6	5	3.6	3.6	0.8	2.4	15	250	225	4	11	0.15
MGNR07R	M2 × 6	7	4.8	4.2	2.3	2.4	15	600	585	5	12	0.22
MGNR09R	M3 × 8	9	6.5	6.0	3.5	3.5	20	1,200	1,180	5	15	0.38
MGNR12R	M3 × 8	12	8.0	6.0	4.5	3.5	25	2,000	1,975	5	20	0.65
MGNR15R	M3 × 10	15	10.0	6.0	4.5	3.5	40	2,000	1,960	6	34	1.06

3.5.13.2 Dimensioni MGW_R

Tabella 3.83	Dimensioni della ro	taia MG	W_R										
Serie/ Viti	Dimer	Dimensioni della Rotaia [mm]						Lungh. max.	Lunghezza max.	E _{1/2} min	E _{1/2} max	Peso	
Taglia	per rotaia [mm]	W _R	H _R	W _B	D	h	d	Р	[mm]	$E_1 = E_2 [mm]$	[mm]	[mm]	[kg/m]
MGWR05R	M2.5 × 7	10	4.0	_	5.5	1.6	3.0	20	250	220	4	11	0.34
MGWR07R	M3 × 6	14	5.2	-	6.0	3.2	3.5	30	600	570	6	24	0.51
MGWR09R	M3 × 8	18	7.0	-	6.0	4.5	3.5	30	1,200	1,170	6	24	0.91
MGWR12R	M4 × 8	24	8.5	_	8.0	4.5	4.5	40	2,000	1,960	8	32	1.49
MGWR15R	M4 × 10	42	9.5	23	8.0	4.5	4.5	40	2,000	1,960	8	32	2.86


Nota:

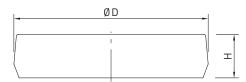
- 1. Senza indicazione della dimensione $E_{1/2}$, considerando $E_{1/2}$ min è possibile determinare il numero massimo di fori di montaggio.
- 2. Le rotaie sono tagliate alla lunghezza desiderata. Senza alcuna indicazione della dimensione $E_{1/2}$ saranno eseguite simmetriche.

3.5.13.3 Calcolo della lunghezza delle rotaie

HIWIN offre rotaie con lunghezze personalizzate. Per evitare che l'ultima parte della rotaia diventi instabile, i valori di E non devono essere superiori alla metà della lunghezza del passo (P). Contemporaneamente, il valore $\rm E_{1/2}$ deve essere compreso tra $\rm E_{1/2}$ min e $\rm E_{1/2}$ max in modo da non andare in interferenza con il foro di montaggio.

F 3.13
$$L = (n-1) \times P + E_1 + E_2$$

- L Lunghezza totale della rotaia [mm]
- n Numero fori montaggio
- P Distanza tra i due fori di montaggio [mm]
- E1/2 Distanza dal primo all'ultimo foro dall'estremità della rotaia [mm]

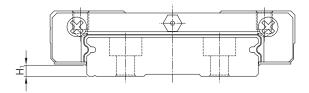

3.5.13.4 Coppie di serraggio delle viti di ancoraggio

Il serraggio insufficiente delle viti di fissaggio compromette gravemente la precisione della guida lineare; di conseguenza, raccomandiamo le coppie di serraggio seguenti a seconda delle dimensioni delle viti.

Tabella 3.84 Coppie o	Tabella 3.84 Coppie di serraggio delle viti di fissaggio ai sensi ISO 4762-12.9							
Serie/Taglia	Dimensione vite	Coppia [Nm]	Serie/Taglia	Dimensione vite	Coppia [Nm]			
MGN05	M2 × 6	0.6	MGW05	M2.5 × 7	1.2			
MGN07	M2 × 6	0.6	MGW07	M3 × 6	2.0			
MGN09	M3 × 8	2.0	MGW09	M3 × 8	2.0			
MGN12	M3 × 8	2.0	MGW12	M4 × 8	4.0			
MGN15	M3 × 10	2.0	MGW15	M4 × 10	4.0			

3.5.13.5 Tappi per i fori di montaggio delle rotaie

I tappi servono a impedire che trucioli e sporco entrino nei fori di montaggio.I tappi standard in plastica sono forniti unitamente alle singole rotaie.


Tabella 3.85 Tappi pe	Tabella 3.85 Tappi per i fori di montaggio delle rotaie						
Rotaia	Vite	Numero artic	olo			Ø D [mm]	Altezza H [mm]
		Plastica	Plastica				
		Gmbh	TW	Gmbh	TW		
MGNR09R	M3	5-002217 ¹⁾	950001B1	5-001340 ¹⁾	95000EA1	6	1.2
MGNR12R	M3	5-002217	950001B1	5-001340	95000EA1	6	1.2
MGNR15R	M3	5-002217	950001B1	5-001340	95000EA1	6	1.2
MGWR09R	M3	5-002217	950001B1	5-001340	95000EA1	6	1.2
MGWR12R	M4	5-002215	95000XA2	-	_	8	1.2
MGWR15R	M4	5-002215	95000XA2	_	_	8	1.2

¹⁾ Standard: senza tappi. Specificare nell'ordine se i tappi sono richiesti è possibile montarli solo con bulloni a testa cilindrica ribassata secondo DIN 7984

Serie MG

3.5.14 Sistemi di tenuta

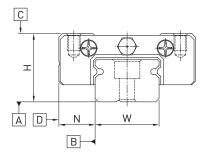

I carrelli della serie MG sono dotati di tenute frontali di serie su entrambi i lati per impedire l'ingresso della polvere nel carrello.È possibile inoltre ordinare le tenute inferiori aggiungendo "+U" seguito dal numero del modello.Per le misure 12 e 15 le tenute inferiori sono disponibili come opzione, mentre tale opzione non è disponibile per le misure 5, 7 e 9 a causa dei limiti di ingombro di H₁. Se la guida lineare è dotata di tenuta inferiore, la superficie di montaggio laterale della rotaia non deve essere maggiore di H₁.

Tabella 3.86 Ingombro H ₁					
Serie/Taglia	Tenuta inferiore	H ₁	Serie/Taglia	Tenuta inferiore	H ₁
MGN05	_	_	MGW05	_	_
MGN07	_	_	MGW07	_	_
MGN09	_	_	MGW09	_	_
MGN12	•	2.0	MGW12	•	2.6
MGN15	•	3.0	MGW15	•	2.6

3.5.15 Tolleranze in funzione della classe di precisione

Le serie MG sono disponibili in tre differenti classi di precisione, a seconda del parallelismo tra carrelli e rotaie e della precisione della altezza H e della larghezza N. La scelta è determinata dai requisiti della macchina in cui si applicano le guide lineari. HIWIN srl gestisce nella propria sede fino alla classe P.

3.5.15.1 Parallelismo

Parallelismo tra la superficie di battuta del carrello D e della rotaia B e parallelismo tra la superficie superiore del carrello C e la superficie d'appoggio della rotaia A. La misurazione è considerata con rotaia montata in condizioni ottimali e al centro di ogni carrello.

Lunghezza Rotaia [mm]	Classe di precisione			
	C	Н	Р	
- 50	12	6	2.0	
50 - 80	13	7	3.0	
80 - 125	14	8	3.5	
125 - 200	15	9	4.0	
200 - 250	16	10	5.0	
250 - 315	17	11	5.0	
315 - 400	18	11	6.0	
400 - 500	19	12	6.0	
500 - 630	20	13	7.0	
630 - 800	22	14	8.0	
800 – 1000	23	16	9.0	
000 - 1200	25	18	11.0	
200 – 1300	25	18	11.0	
300 – 1400	26	19	12.0	
400 – 1500	27	19	12.0	
500 – 1600	28	20	13.0	
600 – 1700	29	20	14.0	
700 – 1800	30	21	14.0	
800 – 1900	30	21	15.0	
1900 – 2000	31	22	15.0	

3.5.15.2 Precisione – altezza e larghezza

Tolleranza dell'altezza H

Massima deviazione assoluta dell'altezza H, misurata tra la superficie superiore del carrello C e la superficie inferiore della rotaia A per qualsiasi posizione del carrello sulla rotaia.

Variazione di altezza H

Massima deviazione relativa dell'altezza H tra due o più carrelli sulla stessa rotaia o su rotaie in parallelo, misurata nella medesima posizione della rotaia.

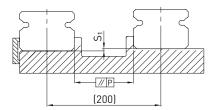
Tolleranza della larghezza N

Massima deviazione assoluta della larghezza N, misurata tra le superfici di battuta del carrello D e della rotaia B per qualsiasi posizione del carrello sulla rotaia.

Variazione della larghezza N

Massima deviazione relatina alla larghezza N tra due o più carrelli sulla stessa rotaia, misurata nella medesima posizione della rotaia.

Tabella 3.88 Tolleranze di altezza e larghezza							
Serie/Taglia	Classe di precisione	Tolleranza dell'altezza H	Tolleranza larghezza N	Variazione di altezza H	Variazione larghezza N		
MG_05 - MG_15	C (Normale)	± 0.04	± 0.04	0.03	0.3		
	H (Elevato)	± 0.02	± 0.025	0.015	0.02		
	P (Preciso)	± 0.01	± 0.015	0.007	0.01		


Unità: mm

Serie MG

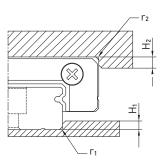
3.5.15.3 Tolleranze ammissibili delle superfici di montaggio

Per sfruttare al meglio la precisione, rigidità e durata delle guide MG è necessario rispettare le tolleranze di lavorazione delle superfici

Parallelismo della superficie di riferimento (P):

Serie/Taglia	Classe di precarico	Classe di precarico							
	ZF	ZO	Z1						
MG_05	2	2	2						
MG_07	3	3	3						
MG_09	4	4	3						
MG_12	9	9	5						
MG_15	10	10	6						

Tabella 3.90 Tolleranza massima dell'altezza della superficie di riferimento (S ₁)										
Serie/Taglia	Classe di precarico									
	ZF	ZO	Z1							
MG_05	20	20	2							
MG_07	25	25	3							
MG_09	35	35	6							
MG_12	50	50	12							
MG_15	60	60	20							
Unità: µm										


Tabella 3.91 Requisiti per la superficie di montaggio								
Serie/Taglia	Planarità richiesta per la superficie di montaggio							
MG_05	0.015/200							
MG_07	0.025/200							
MG_09	0.035/200							
MG_12	0.050/200							
MG_15	0.060/200							

Nota: I valori della tabella sono validi per classi di precarico ZF e ZO. Per Z1 o se più rotaie sono montate sulla stessa superficie, si consiglia di utilizzare il 50 % o meno dei valori sopra indicati.

3.5.16 Altezze delle battute e raggi di raccordo

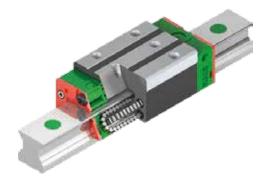
Se le altezze degli spallamenti e differenti raggi di raccordo delle superfici di montaggio non sono corretti, la precisione risulterà diversa da quella prevista e si verificherà un'interferenza con il profilo della rotaia o del carrello. Rispettando le altezze e i raccordi previsti per gli spallamenti è possibile eliminare eventuali errori di installazione.

Serie/Taglia	Raggio max smusso r ₁	Raggio max smusso r ₂	Altezza spallamento H_1	Altezza spallamento H ₂		
MGN05	0.1	0.2	1.2	2		
MGN07	0.2	0.2	1.2	3		
MGN09	0.2	0.3	1.7	3		
MGN12	0.3	0.4	1.7	4		
MGN15	0.5	0.5	2.5	5		
MGW05	0.1	0.2	1.2	2		
MGW07	0.2	0.2	1.7	3		
MGW09	0.3	0.3	2.5	3		
MGW12	0.4	0.4	3.0	4		
MGW15	0.4	0.8	3.0	5		

Unita: mm

GW-IT-20-06 101

Serie RG/OR


3.6 Serie RG e QR

3.6.1 Caratteristiche delle guide lineari serie RG e QR

Nelle guide lineari HIWIN serie RG il corpo volvente è costituito da un rullo, anzichè da una sfera.La serie RG offre rigidità e capacità di carico estremamente elevate. Queste guide presentano un angolo di contatto di 45°. La deformazione elastica della superficie di contatto lineare è notevolmente ridotta, pertanto la guida offre livelli di rigidità e capacità di carico nettamente superiori in tutte e quattro le direzioni di carico. Le guide lineari della serie RG sono quindi ideali per l'industria di altissima precisione. I modelli della serie QR con tecnologia SynchMotion™ offrono tutti i vantaggi della serie RG standard.Inoltre, grazie al movimento controllato dei rulli ingabbiati sono caratterizzati da un miglioramento della scorrevolezza, intesa come linearità e fluidità di movimento, da velocità maggiori, da intervalli di lubrificazione più lunghi ed una minore rumorosità. Poiché le dimensioni di montaggio dei carrelli QR sono identiche a quelle dei carrelli RG, possono essere montati anche sulla rotaia RGR standard e quindi sono esattamente intercambiabili. Per ulteriori informazioni, s.v. Pagina 24

3.6.2 Struttura serie RG/QR

- O Guida a 4 ricircoli di rulli
- Angolo di contatto di 45°
- O Sono disponibili diversi tipi di tenute in funzione del campo di applicazione
- o 6 possibili opzioni di collegamento dell'ingrassatore e dell'adattatore per lubrificazione
- Tecnologia SynchMotion™ (serie QR)

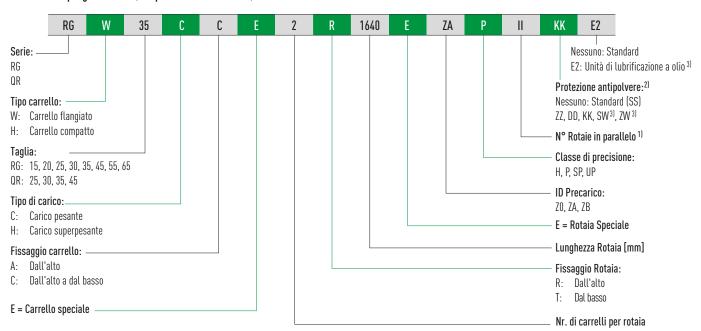
Struttura serie RG

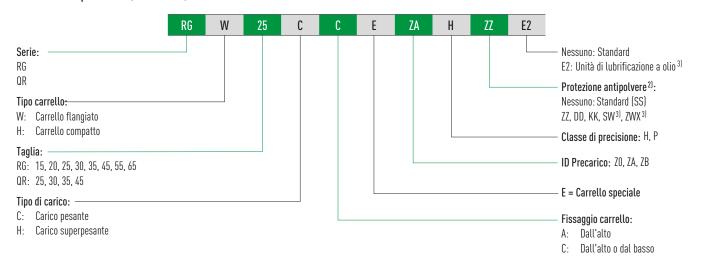
Vantaggi:

- Esente da giochi
- Intercambiabile
- O Coefficienti di carico molto elevati
- Massima rigidità
- Basse forze di avanzamento anche con elevato precarico

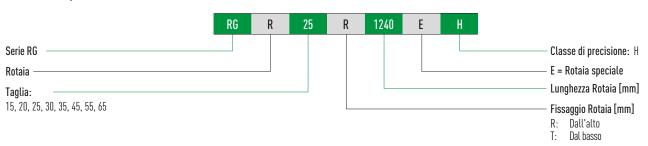
Struttura serie QR

Ulteriori vantaggi serie QR:


- o Miglioramento della scorrevolezza
- Ottimizzato per velocità e accelerazioni superiori
- o Intervalli di lubrificazione più lunghi
- Basso livello di rumorosità
- Maggiori capacità di carico dinamico


3.6.3 Codici d'ordine per le serie RG/QR

Le guide lineari RG/QR possono essere gestite assemblate o intercambiabili. Le dimensioni di entrambi i modelli sono identiche. La differenza fondamentale risiede nel fatto che nel caso dei modelli intercambiabili i carrelli e le rotaie possono essere sostituiti e gestiti liberamente. Il codice della serie indica la misura, il tipo, la classe di precisione, la classe di precarico e così via.


Codice ordine per guide lineari (completamente assemblate)

Codice d'ordine per carrello (non montato)

Codice d'ordine per rotaia (non montata)

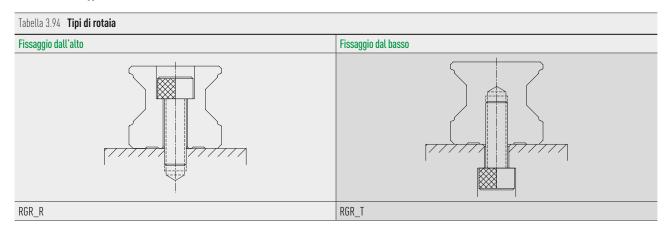
Note:

Il numero romano indica il numero di guide di cui è previsto il parallelo e significa che un elemento dell'articolo sopra descritto si riferisce numericamente ad una guida. Nel caso di rotaie singole non è indicata alcuna cifra. Di default, le rotaie giuntate sono consegnate con giunzioni sfalsate

²⁾ Panoramica dei singoli sistemi di tenuta a pagina 22

³⁾ Disponibile solo per RG

Serie RG/QR

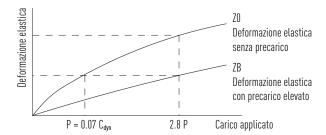

3.6.4 Tipi di carrello

Per le sue guide lineari HIWIN offre carrelli compatti e flangiati.Grazie alla minore altezza e alla più ampia superficie di montaggio i carrelli flangiati sono più indicati in caso di alti carichi.

Tabella 3.93 Tipi di ca	rrello				
Tipo	Serie/ Taglia	Struttura	Tolleranza [mm]	Lunghezza rotaia [mm]	Applicazioni caratteristiche
Tipo compatto	RGH-CA RGH-HA	***************************************	28 - 90	100 – 4.000	 Tecnologie di automazione Tecnica di trasporto, Macchine utensili CNC Macchine da taglio ad elevate prestazioni Rettificatrici CNC Macchine per stampaggio a iniezione
Carrello flangiato	RGW-CC RGW-HC		24 – 90		Frese a portale Macchine e apparecchi che necessitano di elevata rigidità strutturale Macchine e apparecchi che necessitano di elevata capacità di carico Macchine per elettroerosione

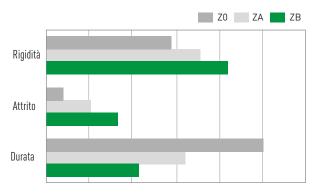
3.6.5 Tipi di Rotaia

Oltre alle rotaie con sistema di fissaggio standard dall'alto, HIWIN fornisce anche rotaie con sistema di fissaggio dal basso



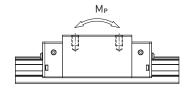
3.6.6 Precarico

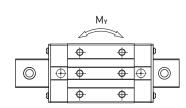
Definizione


E' possibile applicare un precarico ad ogni tipo di guida in base alle dimensioni delle sfere. La curva mostra che la rigidità viene raddoppiata quando si applica un precarico. La serie RG/QR offre tre classi di precarico standard, per varie applicazioni e condizioni.

ID Precarico

Tabella3.95 ID Precarico										
ID	Precarico		Applicazione							
ZO	Precarico leggero	0.02 - 0.04 C _{dyn}	Direzione di carico costante, urti limitati, requisiti di precisione limitati							
ZA	Precarico medio	0.07 - 0.09 C _{dyn}	Requisiti di precisione elevati							
ZB	Precarci elevato	0.12 - 0.14 C _{dyn}	Requisiti di rigidità elevatissimi, presenza di urti e vibrazioni							


Il grafico evidenzia la relazione tra rigidità, resistenza all'avanzamento e durata nominale.Per evitare che la durata della guida venga ridotta da un precarico eccessivo, per le taglie più piccoli è consigliabile utilizzare precarichi non superiori a ZA.



Serie RG/QR

3.6.7 Capacità di carico e momenti

Tabella3.96	Tabella3.96 Capacità di carico e momenti delle serie RG/QR											
Serie/	Capacità di Carico	Capacità di carico statico	Momento Di	inamico [Nm]		Momento S	Momento Statico [Nm]					
Taglia	Dinamico C _{dyn} [N] ¹⁾	C ₀ [N]	M _R	M _P	M _Y	M _{OR}	M _{OP}	M _{OY}				
RG_15C	11,300	24,000	147	82	82	311	173	173				
RG_20C	21,300	46,700	296	210	210	647	460	460				
RG_20H	26,900	63,000	373	358	358	872	837	837				
RG_25C	27,700	57,100	367	293	293	758	605	605				
QR_25C	38,500	54,400	511	444	444	722	627	627				
RG_25H	33,900	73,400	450	457	457	975	991	991				
QR_25H	44,700	65,300	594	621	621	867	907	907				
RG_30C	39,100	82,100	688	504	504	1,445	1,060	1,060				
QR_30C	51,500	73,000	906	667	667	1,284	945	945				
RG_30H	48,100	105,000	845	784	784	1,846	1,712	1,712				
QR_30H	64,700	95,800	1,138	1,101	1,101	1,685	1,630	1,630				
RG_35C	57,900	105,200	1,194	792	792	2,170	1,440	1,440				
QR_35C	77,000	94,700	1,590	1,083	1,083	1,955	1,331	1,331				
RG_35H	73,100	142,000	1,508	1,338	1,338	2,930	2,600	2,600				
QR_35H	95,700	126,300	1,975	1,770	1,770	2,606	2,335	2,335				
RG_45C	92,600	178,800	2,340	1,579	1,579	4,520	3,050	3,050				
QR_45C	123,200	156,400	3,119	2,101	2,101	3,959	2,666	2,666				
RG_45H	116,000	230,900	3,180	2,748	2,748	6,330	5,470	5,470				
QR_45H	150,800	208,600	3,816	3,394	3,394	5,278	4,694	4,694				
RG_55C	130,500	252,000	4,148	2,796	2,796	8,010	5,400	5,400				
RG_55H	167,800	348,000	5,376	4,942	4,942	11,150	10,250	10,250				
RG_65C	213,000	411,600	8,383	5,997	5,997	16,200	11,590	11,590				
RG_65H	275,300	572,700	10,839	10,657	10,657	22,550	22,170	22,170				

 $^{^{1]}}$ Capacità di carico dinamica per una distanza percorsa di 100.000 m

3.6.8 Rigidità

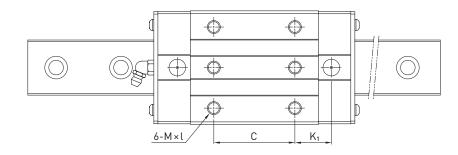
La rigidità dipende dal precarico. Con la formula F 3.14 è possibile determinare la deformazione a seconda della rigidità.

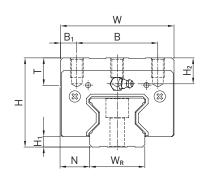
F 3.14

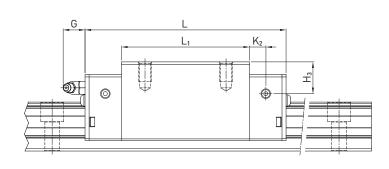
$$\delta = \frac{P}{k}$$

 δ Deformazione [μ m]

P Carico di servizio [N]

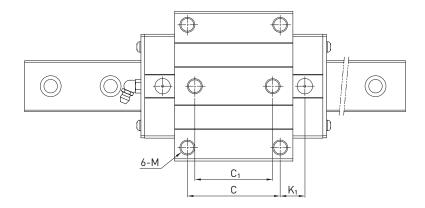

k Rigidità [N/μm]

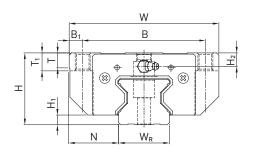

Classe di carico	Serie/Taglia	Rigidità in funzione	del precarico	Rigidità in funzione del precarico								
		ZO	ZA	ZB								
Carico pesante	RG_15C	482	504	520								
	RG_20C	586	614	633								
	RG_25C	682	717	740								
	QR_25C	616	645	665								
	RG_30C	809	849	876								
	QR_30C	694	726	748								
	RG_35C	954	1,002	1,035								
	QR_35C	817	856	882								
	RG_45C	1,433	1,505	1,554								
	QR_45C	1,250	1,310	1,350								
	RG_55C	1,515	1,591	1,643								
	RG_65C	2,120	2,227	2,300								
arico superpesante	RG_20H	786	823	848								
	RG_25H	873	917	947								
	QR_25H	730	770	790								
	RG_30H	1,083	1,136	1,173								
	QR_30H	910	950	980								
	RG_35H	1,280	1,344	1,388								
	QR_35H	1,090	1,140	1,170								
	RG_45H	1,845	1,938	2,002								
	QR_45H	1,590	1,660	1,720								
	RG_55H	2,079	2,182	2,254								
	RG_65H	2,931	3,077	3,178								

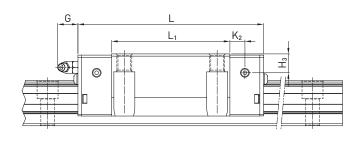

Serie RG/QR

3.6.9 Dimensioni dei carrelli RG/QR

3.6.9.1 RGH/QRH



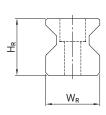

Tabella3.98	ella3.98 Dimensioni del carrello																		
Serie/ Taglia		nsioni di aggio [m		Dimer	isioni d	el carre	carrello [mm]										Coefficienti di carico [N]		Peso [kg]
	Н	H ₁	N	W	В	B ₁	C	L ₁	L	K ₁	K ₂	G	M×l	T	H ₂	H ₃	C _{dyn}	C ₀	
RGH15CA	28	4.0	9.5	34	26	4.0	26	45.0	68.0	13.40	4.70	5.3	M4 × 8	6.0	7.6	10.1	11,300	24,000	0.20
RGH20CA	34	5.0	12.0	44	32	6.0	36	57.5	86.0	15.80	6.00	5.3	$M5 \times 8$	8.0	8.3	8.3	21,300	46,700	0.40
RGH20HA							50	77.5	106.0	18.80							26,900	63,000	0.53
RGH25CA	40	5.5	12.5	48	35	6.5	35	64.5	97.9	20.75	7.25	12.0	M6 × 8	9.5	10.2	10.0	27,700	57,100	0.61
RGH25HA							50	81.0	114.4	21.50							33,900	73,400	0.75
QRH25CA	40	5.5	12.5	48	35	6.5	35	66.0	9.9	20.75	7.25	12.0	M6 × 8	9.5	10.2	10.0	38,500	54,400	0.60
QRH25HA							50	81.0	112.9	21.50							44,700	65,300	0.74
RGH30CA	45	6.0	16.0	60	40	10.0	40	71.0	109.8	23.50	8.00	12.0	M8 × 10	9.5	9.5	10.3	39,100	82,100	0.90
RGH30HA							60	93.0	131.8	24.50							48,100	105,000	1.16
QRH30CA	45	6.0	16.0	60	40	10.0	40	71.0	109.8	23.50	8.00	12.0	M8 × 10	9.5	9.5	10.3	51,500	73,000	0.89
QRH30HA							60	93.0	131.8	24.50							64,700	95,800	1.15
RGH35CA	55	6.5	18.0	70	50	10.0	50	79.0	124.0	22.50	10.00	12.0	M8 × 12	12.0	16.0	19.6	57,900	105,200	1.57
RGH35HA							72	106.5	151.5	25.25							73,100	142,000	2.06
QRH35CA	55	6.5	18.0	70	50	10.0	50	79.0	124.0	22.50	10.00	12.0	M8 × 12	12.0	16.0	19.6	77,000	94,700	1.56
QRH35HA							72	106.5	151.5	25.25							95,700	126,300	2.04
RGH45CA	70	8.0	20.5	86	60	13.0	60	106.0	153.2	31.00	10.00	12.9	M10 × 17	16.0	20.0	24.0	92,600	178,800	3.18
RGH45HA							80	139.8	187.0	37.90							116,000	230,900	4.13
QRH45CA	70	8.0	20.5	86	60	13.0	60	106.0	153.2	31.00	10.00	12.9	M10 × 17	16.0	20.0	24.0	123,200	156,400	3.16
QRH45HA							80	139.8	187.0	37.90							150,800	208,600	4.10
RGH55CA	80	10.0	23.5	100	75	12.5	75	125.5	183.7	37.75	12.50	12.9	$M12 \times 18$	17.5	22.0	27.5	130,500	252,000	4.89
RGH55HA							95	173.8	232.0	51.90							167,800	348,000	6.68
RGH65CA	90	12.0	31.5	126	76	25.0	70	160.0	232.0	60.80	15.80	12.9	M16 × 20	25.0	15.0	15.0	213,000	411,600	8.89
RGH65HA							120	223.0	295.0	67.30							275,300	572,700	12.13

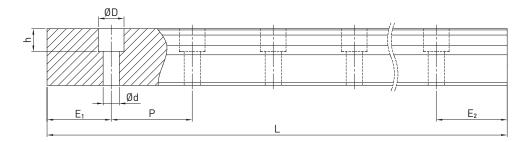

Per le dimensioni della rotaia, s.v Pagina 110, per raccordi standard e optional di lubrificazione vedi Pagina 126

3.6.9.2 RGW/QRW

Tabella3.99	Dime	ensioni	del carı	rello																	
Serie/ Taglia		nsioni di aggio [m		Dime	ension	i del ca	rrello	[mm]											Coefficie carico [N		Peso [kg]
	Н	H ₁	N	W	В	B ₁	C	C ₁	L ₁	L	K ₁	K ₂	G	М	T	T ₁	H ₂	H ₃	C _{dyn}	C_0	
RGW15CC	24	4.0	16.0	47	38	4.5	30	26	45.0	68.0	11.40	4.70	5.3	M5	6.0	7	3.6	6.1	11,300	24,000	0.22
RGW20CC	30	5.0	21.5	63	53	5.0	40	35	57.5	86.0	13.80	6.00	5.3	M6	8.0	10	4.3	4.3	21,300	46,700	0.47
RGW20HC									77.5	106.0	23.80								26,900	63,000	0.63
RGW25CC	36	5.5	23.5	70	57	6.5	45	40	64.5	97.9	15.75	7.25	12.0	M8	9.5	10	6.2	6.0	27,700	57,100	0.72
RGW25HC									81.0	114.4	24.00								33,900	73,400	0.91
QRW25CC	36	5.5	23.5	70	57	6.5	45	40	66.0	97.9	15.75	7.25	12.0	M8	9.5	10	6.2	6.0	38,500	54,400	0.71
QRW25HC									81.0	112.9	24.00								44,700	65,300	0.90
RGW30CC	42	6.0	31.0	90	72	9.0	52	44	71.0	109.8	17.50	8.00	12.0	M10	9.5	10	6.5	7.3	39,100	82,100	1.16
RGW30HC									93.0	131.8	28.50								48,100	105,000	1.52
QRW30CC	42	6.0	31.0	90	72	9.0	52	44	71.0	109.8	17.50	8.00	12.0	M10	9.5	10	6.5	7.3	51,500	73,000	1.15
QRW30HC									93.0	131.8	28.50								64,700	95,800	1.51
RGW35CC	48	6.5	33.0	100	82	9.0	62	52	79.0	124.0	16.50	10.00	12.0	M10	12.0	13	9.0	12.6	57,900	105,200	1.75
RGW35HC									106.5	151.5	30.25								73,100	142,000	2.40
QRW35CC	48	6.5	33.0	100	82	9.0	62	52	79.0	124.0	16.50	10.00	12.0	M10	12.0	13	9.0	12.6	77,000	94,700	1.74
QRW35HC									106.5	151.5	30.25								95,700	126,300	2.38
RGW45CC	60	8.0	37.5	120	100	10.0	80	60	106.0	153.2	21.00	10.00	12.9	M12	14.0	15	10.0	14.0	92,600	178,800	3.43
RGW45HC									139.8	187.0	37.90								116,000	230,900	4.57
QRW45CC	60	8.0	37.5	120	100	10.0	80	60	106.0	153.2	21.00	10.00	12.9	M12	14.0	15	10.0	14.0	123,200	156,400	3.41
QRW45HC	F10	40.0	/O.F.	4.0	44.1	40.0	0.5	70	139.8	187.0	37.90	10.50	10.0	144.7	4/0	45	40.0	48.5	150,800	208,600	4.54
RGW55CC	70	10.0	43.5	140	116	12.0	95	70	125.5	183.7	27.75	12.50	12.9	M14	16.0	17	12.0	17.5	130,500	252,000	5.43
RGW55HC	00	40.0	F0.F	450	4.16	4.4.6	446	00	173.8	232.0	51.90	45.00	10.0	144.6	00.0	00	45.0	45.0	167,800	348,000	7.61
RGW65CC	90	12.0	53.5	170	142	14.0	110	82	160.0	232.0	40.80	15.80	12.9	M16	22.0	23	15.0	15.0	213,000	411,600	11.63
RGW65HC									223.0	295.0	72.30								275,300	572,700	16.58

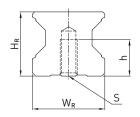
Per le dimensioni della rotaia, s.v Pagina 110, per raccordi standard e optional di lubrificazione vedi Pagina 126


Guide Lineari


Serie RG/QR

3.6.10 Dimensioni della rotaia RG

La rotaia RG viene utilizzata sia per i carrelli RG che per i carrelli QR.


3.6.10.1 Dimensioni RGR_R

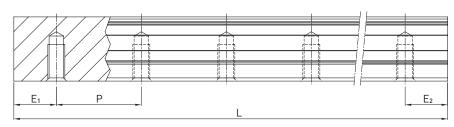


Tabella3.100	Dimensioni della	rotaia R	GR_R									
Serie/	Vite di montaggio	Dimensioni della Rotaia [mm]						Lunghezza Max.	Lunghezza Max.	E _{1/2} min	E _{1/2} max	Peso
Taglia	per rotaia [mm]	W_R	H _R	D	h	d	Р	[mm]	$E_1 = E_2 [mm]$	[mm]	[mm]	[kg/m]
RGR15R	M4 × 16	15	16.5	7.5	5.7	4.5	30.0	4,000	3,960.0	6	24.0	1.70
RGR20R	M5 × 20	20	21.0	9.5	8.5	6.0	30.0	4,000	3,960.0	7	23.0	2.66
RGR25R	M6 × 20	23	23.6	11.0	9.0	7.0	30.0	4,000	3,960.0	8	22.0	3.08
RGR30R	M8 × 25	28	28.0	14.0	12.0	9.0	40.0	4,000	3,920.0	9	31.0	4.41
RGR35R	M8 × 25	34	30.2	14.0	12.0	9.0	40.0	4,000	3,920.0	9	31.0	6.06
RGR45R	M12 × 35	45	38.0	20.0	17.0	14.0	52.5	4,000	3,937.5	12	40.5	9.97
RGR55R	M14 × 45	53	44.0	23.0	20.0	16.0	60.0	4,000/5,600	3,900.0/5,400	14	46.0	13.98
RGR65R	M16 × 50	63	53.0	26.0	22.0	18.0	75.0	4,000/5,600	3,900.0/5,400	15	60.0	20.22

3.6.10.2 Dimensioni RGR_T (montaggio della rotaia dal basso)

Tabella3.101	Dimensi	ioni della F	Rotaia RGR_	_T						
Serie/	Dimensi	oni della R	otaia [mm]			Lunghezza Max.	Lunghezza Max.	E _{1/2} min	E _{1/2} max	Peso [kg/m]
Taglia	W _R	H _R	S	h	P	[mm]	$E_1 = E_2 [mm]$	[mm]	[mm]	
RGR15T	15	16.5	M5	8.0	30.0	4,000	3,960.0	6	24.0	1.86
RGR20T	20	21.0	M6	10.0	30.0	4,000	3,960.0	7	23.0	2.76
RGR25T	23	23.6	M6	12.0	30.0	4,000	3,960.0	8	22.0	3.36
RGR30T	28	28.0	M8	15.0	40.0	4,000	3,920.0	9	31.0	4.82
RGR35T	34	30.2	M8	17.0	40.0	4,000	3,920.0	9	31.0	6.48
RGR45T	45	38.0	M12	24.0	52.5	4,000	3,937.5	12	40.5	10.83
RGR55T	53	44.0	M14	24.0	60.0	4,000/5,600	3,900.0/5,400	14	46.0	15.15
RGR65T	63	53.0	M20 ¹⁾	30.0	75.0	4,000	3,900.0	15	60.0	21.24

¹⁾ Deviazione da DIN 645

Note:

- 1. Senza indicazione della dimensione $E_{1/2}$, considerando $E_{1/2}$ min è possibile determinare il numero massimo di fori di montaggio.
- 2. Le rotaie sono tagliate alla lunghezza desiderata. Senza alcuna indicazione della dimensione $E_{1/2}$ saranno eseguite simmetriche

3.6.10.3 Calcolo della lunghezza delle rotaie

HIWIN offre rotaie con lunghezze personalizzate. Per evitare che l'ultima parte della rotaia diventi instabile, i valori di E non devono essere superiori alla metà della lunghezza del passo (P). Contemporaneamente, il valore $E_{1/2}$ deve essere compreso tra $E_{1/2}$ min e $E_{1/2}$ max in modo da non andare in interferenza con il foro di montaggio.

F 3.15
$$L = (n-1) \times P + E_1 + E_2$$

- L Lunghezza totale della rotaia [mm]
- n Numero di fori di montaggio
- P Distanza tra due fori [mm]
- E_{1/2} Distanza tra il centro dell'ultimo foro di montaggio e l'estremità della rotaia [mm]

3.6.10.4 Coppie di serraggio delle viti di ancoraggio

Il serraggio insufficiente delle viti di fissaggio compromette gravemente la precisione della guida lineare.È consigliabile utilizzare le seguenti coppie di serraggio, a seconda delle dimensioni delle viti.

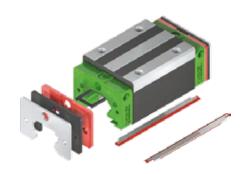
Tabella3.102 Coppie di se	Tabella3.102 Coppie di serraggio delle viti di fissaggio ai sensi ISO 4762-12.9									
Serie/Taglia	Dimensioni vite	Coppia [Nm]	Serie/Dimensioni	Dimensioni vite	Coppia [Nm]					
RG_15	M4 × 16	4	RG/QR_35	M8 × 25	31					
RG_20	M5 × 20	9	RG/QR_45	M12 × 35	120					
RG/QR_25	M6 × 20	14	RG_55	M14 × 45	160					
RG/QR_30	M8 × 25	31	RG_65	M16 × 50	200					

3.6.10.5 Tappi per i fori di montaggio delle rotaie

I tappi servono a impedire che trucioli e sporco entrino nei fori di montaggio. I tappi standard in plastica sono forniti unitamente alle singole rotaie. Ulteriori tappi opzionali devono essere ordinati separatamente.

Tabella 3.103 Tappi pe	Tabella 3.103 Tappi per i fori di montaggio delle rotaie									
Rotaia	Vite	Numero Art	icolo				Ø D [mm]	Altezza H [mm]		
		Plastica	Plastica			Acciaio				
		Gmbh	TW	Gmbh	TW					
RGR15R	M4	5-002218	950002C1	5-001344	95000FA1	_	7.5	1.2		
RGR20R	M5	5-002220	950003D2	5-001350	95000GA1	5-001352	9.5	2.5		
RGR25R	M6	5-002221	950004D2	5-001355	95000HA1	5-001357	11.0	2.8		
RGR30R	M8	5-002222	950005D2	5-001360	95000IA1	5-001362	14.0	3.5		
RGR35R	M8	5-002222	950005D2	5-001360	95000IA1	5-001362	14.0	3.5		
RGR45R	M12	5-002223	950007D2	5-001324	95000JA1	5-001327	20.0	4.0		
RGR55R	M14	5-002224	950008C2	5-001330	95000KA1	5-001332	23.0	4.0		
RGR65R	M16	5-002225	950009D1	5-001335	95000LA1	5-001337	26.0	4.0		

Guide Lineari


Serie RG/QR

3.6.11 Sistemi di tenuta

Per i carrelli HIWIN sono disponibili diversi sistemi di tenuta.

Una panoramica è disponibile anche a pagina 22.

Nella tabella seguente è riportata la lunghezza complessiva dei carrelli con i diversi sistemi di tenuta. Sono disponibili sistemi di tenuta per queste grandezze.

Serie/Taglia	Lunghezza tota	ile L				
	SS	DD	ZZ	KK	SW	ZW
RG_15C	68.0	72.4	70.0	74.4	-	_
RG_20C	86.0	90.4	88.0	92.4	-	_
RG_20H	106.0	110.4	108.0	112.4	-	_
RG_25C	97.9	102.3	99.9	104.3	-	_
QR_25C	97.7	102.3	99.9	104.3	-	_
RG_25H	114.4	118.8	116.4	120.8	-	_
QR_25H	112.9	117.3	114.9	119.3	-	-
RG_30C	109.8	114.6	112.8	117.6	-	_
QR_30C	109.8	114.6	112.8	117.6	-	_
RG_30H	131.8	136.6	134.8	139.6	-	_
QR_30H	131.8	136.6	134.8	139.6	_	_
RG_35C	124.0	129.0	127.0	132.0	-	_
QR_35C	124.0	129.0	127.0	132.0	-	_
RG_35H	151.5	156.5	154.5	159.5	-	_
QR_35H	151.5	156.5	154.5	159.5	_	_
RG_45C	153.2	160.4	156.2	163.4	156.5	166.2
QR_45C	153.2	160.4	156.2	163.4	_	_
RG_45H	187.0	194.2	190.0	197.2	190.3	200.0
QR_45H	187.0	194.2	190.0	197.2	-	_
RG_55C	183.7	190.9	186.7	193.9	186.9	198.3
RG_55H	232.0	239.2	235.0	242.2	235.2	246.6
RG_65C	232.0	240.8	235.0	243.8	235.2	245.3
RG_65H	295.0	303.8	298.0	306.8	298.2	308.3

3.6.11.1 Codifica dei set di tenute

I set di tenute sono sempre forniti completi di viti per il montaggio e includono i pezzi necessari adeguati oltre alla tenuta standard.

QR: 25, 30, 35, 45

Identificativo protezione antipolvere:

SS: Tenuta standard

ZZ: Tenuta frontale con lamierino metallico

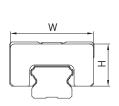
DD: Doppia tenuta frontale

Doppia tenuta frontale con lamierino metallico KK:

SW: Tenuta frontale con doppio labbro

ZW: Tenuta frontale con doppio labbro e lamierino metallico

3.6.12 Attrito


La tabella riporta la resistenza massima all'avanzamento delle singole tenute frontali.

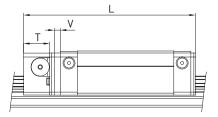
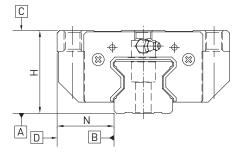

A seconda della classificazione della guarnizione (SS, ZZ, DD, KK) sarà necessario moltiplicare in modo corrispondente il valore. I valori indicati si intendono validi per quanto riguarda carrelli su rotaie senza trattamento. Su rotaie con trattamento si vengono a creare forze di attrito più elevate.

Tabella3.105 Resistenza all'avanzament	Tabella3.105 Resistenza all'avanzamento delle tenute singole									
Serie/Taglia	Attrito [N]	Serie/Taglia	Attrito [N]							
RG_15	2.0	RG/QR_35	3.5							
RG_20	2.5	RG/QR_45	4.2							
RG/QR_25	2.8	RG_55	5.1							
RG/QR_30	3.3	RG_65	6.7							

3.6.13 Unità di lubrificazione E2

Per i dettagli dell'unità di lubrificazione si rimanda alle informazioni generali nella sezione dedicata "2.6.3 Unità di lubrificazione a olio E2" a Pagina 15.

abella 3.106 Dimensioni del carrello con unità di lubrificazione E2 Serie/ Dimensioni del carrello [mm] Quantità olio											
Serie/	Dimensio	Dimensioni del carrello [mm]									
Taglia	W	Н	T	V	L _{SS} ¹⁾	L _{ZZ} 1)	L _{DD} 1)	L _{KK} 1)	[cm ³]		
RG_25C	46.8	29.2	13.5	3.5	114.9	116.9	119.3	121.3	5.0		
RG_25H	46.8	29.2	13.5	3.5	131.4	133.4	135.8	137.8	5.0		
RG_30C	58.8	34.9	13.5	3.5	126.8	129.8	131.6	134.6	7.5		
RG_30H	58.8	34.9	13.5	3.5	148.8	151.8	153.6	156.6	7.5		
RG_35C	68.8	40.3	13.5	3.5	141.0	144.0	146.0	149.0	10.7		
RG_35H	68.8	40.3	13.5	3.5	168.5	171.5	173.5	176.5	10.7		
RG_45C	83.8	50.2	16.0	4.5	173.7	176.7	180.9	183.9	18.5		
RG_45H	83.8	50.2	16.0	4.5	207.5	210.5	214.7	217.7	18.5		
RG_55C	97.6	58.4	16.0	4.5	204.2	207.2	211.4	214.4	26.5		
RG_55H	97.6	58.4	16.0	4.5	252.5	255.5	259.7	262.7	26.5		
RG_65C	121.7	76.1	16.0	4.5	252.5	255.5	261.3	264.3	50.5		
RG_65H	121.7	76.1	16.0	4.5	315.5	318.5	324.3	327.3	50.5		


¹⁾ Lunghezza totale in funzione della protezione antipolvere selezionata.SS = protezione antipolvere standard

Guide Lineari

Serie RG/QR

3.6.14 Tolleranze in funzione della classe di precisione

Le serie RG e QR e sono disponibili in quattro differenti classi di precisione, a seconda del parallelismo tra carrelli e rotaie e della precisione della altezza H e della larghezza N.
La scelta è determinata dai requisiti della macchina in cui si applicano le guide lineari.
HIWIN srl gestisce nella propria sede fino alla classe P.

3.6.14.1 Parallelismo

Parallelismo tra la superficie di battuta del carrello D e della rotaia B e parallelismo tra la superficie superiore del carrello C e la superficie d'appoggio della rotaia A. La misurazione è considerata con rotaia montata in condizioni ottimali e al centro di ogni carrello.

Lunghezza Rotaia [mm]	Classe di precisione									
	Н	Р	SP	UP						
- 100	7	3	2	2						
100 - 200	9	4	2	2						
200 - 300	10	5	3	2						
300 - 500	12	6	3	2						
500 - 700	13	7	4	2						
700 - 900	15	8	5	3						
900 – 1100	16	9	6	3						
1100 – 1500	18	11	7	4						
1500 – 1900	20	13	8	4						
1900 – 2500	22	15	10	5						
2500 – 3100	25	18	11	6						
3100 – 3600	27	20	14	7						
3600 – 4000	28	21	15	7						

3.6.14.2 Precisione - altezza e larghezza

Tolleranza dell'altezza H

Massima deviazione assoluta dell'altezza H, misurata tra la superficie superiore del carrello C e la superficie inferiore della rotaia A per qualsiasi posizione del carrello sulla rotaia.

Variazione di altezza H

Massima deviazione relativa dell'altezza H tra due o più carrelli sulla stessa rotaia o su rotaie in parallelo, misurata nella medesima posizione della rotaia.

Tolleranza della larghezza N

Massima deviazione assoluta della larghezza N, misurata tra le superfici di battuta del carrello D e della rotaia B per qualsiasi posizione del carrello sulla rotaia.

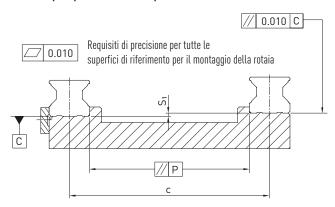
Variazione della larghezza N

Massima deviazione relativa della larghezza N tra due o più carrelli sulla stessa rotaia, misurata nella medesima posizione della rotaia.

Tabella3.108 Tolleranze	di altezza e larghezza				
Serie/Dimensioni	Classe di precisione	Tolleranza dell'altezza H	Tolleranza larghezza N	Variazione di altezza H	Variazione larghezza N
RG_15, 20	H (Elevato)	± 0.03	± 0.03	0.01	0.01
	P (Preciso)	0/- 0.031)	0/- 0.031)	0.006	0.006
	SP (Super preciso)	0/- 0.015	0/-0.015	0.004	0.004
	UP (Ultra preciso)	0/-0.008	0/- 0.008	0.003	0.003
RG_25, 30, 35	H (Elevato)	± 0.04	± 0.04	0.015	0.015
QR_25, 30, 35	P (Preciso)	0/- 0.041)	0/-0.041)	0.007	0.007
	SP (Super preciso)	0/- 0.02	0/-0.02	0.005	0.005
	UP (Ultra preciso)	0/- 0.01	0/- 0.01	0.003	0.003
RG_45, 55	H (Elevato)	± 0.05	± 0.05	0.015	0.02
QR_45	P (Preciso)	0/- 0.05 ¹⁾	0/- 0.05 ¹⁾	0.007	0.01
	SP (Super preciso)	0/- 0.03	0/-0.03	0.005	0.007
	UP (Ultra preciso)	0/- 0.02	0/- 0.02	0.003	0.005
RG_65	H (Elevato)	± 0.07	± 0.07	0.02	0.025
	P (Preciso)	0/- 0.071)	0/- 0.07 1)	0.01	0.015
	SP (Super preciso)	0/-0.05	0/-0.05	0.007	0.01
	UP (Ultra preciso)	0/-0.03	0/-0.03	0.005	0.007

Unità: mm

¹⁾ Guida lineare completamente assemblata


Guide Lineari

Serie RG/QR

3.6.14.3 Tolleranze ammissibili delle superfici di montaggio

Per sfruttare al meglio le elevatissime precisioni, rigidità e durata delle guide RG e QR è necessario rispettare le tolleranze di lavorazione delle superfici di montaggio.

Tolleranza per il parallelismo della superficie di riferimento (P)

Tabella3.109 Tolleranza massima per il parallelismo (P										
Serie/Taglia	Classe di precarico	Classe di precarico								
	ZO	ZA	ZB							
RG_15	5	3	3							
RG_20	8	6	4							
RG/QR_25	9	7	5							
RG/QR_30	11	8	6							
RG/QR_35	14	10	7							
RG/QR_45	17	13	9							
RG_55	21	14	11							
RG_65	27	18	14							
Unità: um	<u> </u>									

Tolleranza dell'altezza della superficie di riferimento (S₁)

F 3.16

$$S_1 = c \times K$$

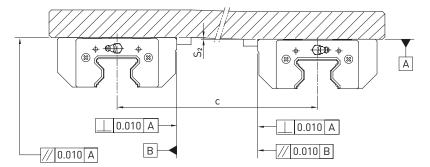
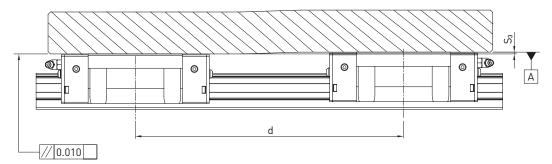

- S₁ Tolleranza max. in altezza [mm]
- c Interasse tra le rotaie [mm]
- K Coefficiente di tolleranza dell'altezza

Tabella3.110 Coefficiente di tolleranza	ciente di tolleranza dell'altezza (K)						
Serie/Taglia	Classe di precarico						
	ZO	ZA	ZB				
RG_15 - 65/QR_25 - 45	2.2 × 10 ⁻⁴	1.7 × 10 ⁻⁴	1.2 × 10 ⁻⁴				

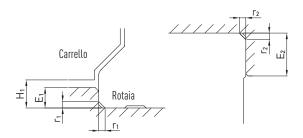

Tolleranza dell'altezza della superficie di montaggio del carrello

- La tolleranza dell'altezza della superficie di riferimento con l'uso parallelo di due o più carrelli (S₂)
 - CONTROLL Requisiti di precisione per tutte le superfici di riferimento per il montaggio del carrello

- F 3.17
- $S_2 = c \times 4.2 \times 10^{-5}$

- S₂ Tolleranza max. in altezza [mm]
- c Interasse tra i carrelli in parallelo [mm]
- o La tolleranza dell'altezza della superficie di riferimento con l'uso parallelo di due o più carrelli $\{S_3\}$
- Requisiti di precisione per tutte le superfici di riferimento per il montaggio del carrello

- F 3.18
- $S_3 = d \times 4.2 \times 10^{-5}$


- S₃ Tolleranza max. in altezza [mm]
- d Interasse tra i carrelli in serie [mm]

Guide Lineari

Serie RG/QR, Serie PG

3.6.15 Altezze delle battute e raggi di raccordo

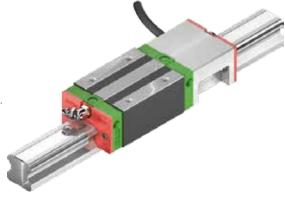
Se le altezze degli spallamenti e i differenti raggi di raccordo delle superfici di montaggio non sono corretti, la precisione risulterà diversa da quella prevista e si verificherà un'interferenza con il profilo della rotaia o del carrello. Rispettando le altezze e i raccordi previsti per gli spallamenti è possibile eliminare eventuali errori di installazione.

Tabella3.111 Altezze de	Tabella3.111 Altezze delle battute e raggi di raccordo								
Serie/Taglia	Raggio max smusso r ₁	Raggio max smusso r ₂	Altezza battuta della rotaia E ₁	Altezza battuta del carrello E 2	Luce libera sotto il carrello H ₁				
RG_15	0.5	0.5	3.0	4.0	4.0				
RG_20	0.5	0.5	3.5	5.0	5.0				
RG/QR_25	1.0	1.0	5.0	5.0	5.5				
RG/QR_30	1.0	1.0	5.0	5.0	6.0				
RG/QR_35	1.0	1.0	6.0	6.0	6.5				
RG/QR_45	1.0	1.0	7.0	8.0	8.0				
RG_55	1.5	1.5	9.0	10.0	10.0				
RG_65	1.5	1.5	10.0	10.0	12.0				

Unità: mm

119

3.7 Serie PG


3.7.1 Caratteristiche delle guide lineari serie PG

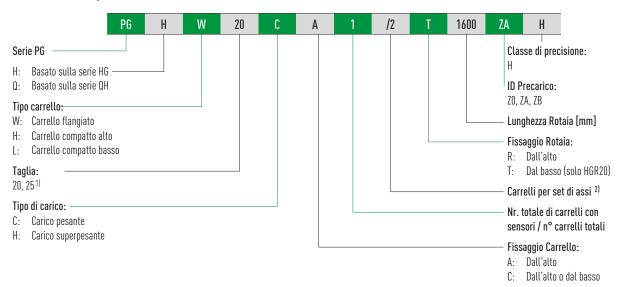
Le guide lineari HIWIN della serie PG sono una versione speciale della serie HG/OH con il sistema integrato MAGIC per la misurazione della posizione. I sistemi di misurazione di posizione della serie MAGIC sono ottimizzati per la misura degli spostamenti lineari e, in particolare, per gli assi azionati da motori lineari. Il sistema di misurazione consiste in una banda magnetica integrata in un nastro portante in acciaio inox, e una testina di lettura. La robusta custodia con eccellente schermatura elettrica e output di segnale in tempo reale fa della serie HIWIN MAGIC un sistema di misurazione di posizione adatto alle applicazioni più sofisticate.

Nella serie PG la testina di lettura è fissata direttamente sul carrello della serie HG/QH. Il nastro magnetico è integrato in una scanalatura dedicata e realizzata sulla faccia superiore della rotaia HGR. Il sistema di misurazione di posizione MAGIC è disponibile anche come modello indipendente dalla rotaia. Il cliente può scegliere la posizione del nastro magnetico e della testina di lettura. Per ulteriori dettagli, consultare il catalogo "Tecnologia di azionamento elettrico - motori lineari, motori torque, sistemi di misura del posizionamento"

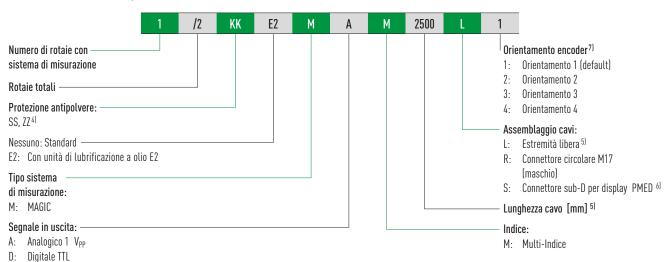
3.7.2 Struttura serie PG

- Carrello serie HG/QH
- O Rotaia serie HG/QH con scanalatura dedicata per la scala di misura.
- O L'encoder può essere montato su carrelli HG-20, HG-25, QH-20 e QH-25.
- Istruzioni di montaggio:
 Guardando la guida di riferimento del carrello, l'encoder va montato a sinistra nella configurazione standard. Anche il cavo dell'encoder sta sul lato della guida di riferimento. (vedi scheda 3.7.6, pag.122)

Vantaggi:


- O Misurazione senza contatto con segnale d'uscita analogico 1Vpp oppure digitale TTL
- O Risoluzione fino a 1 μm
- o Encoder e alloggiamento protetti da polvere, umidità, olio e trucioli
- O Encoder con alloggiamento metallico e modalità di protezione IP67
- Assemblaggio facile
- O Segnale uscente in tempo reale
- o Alloggiamento speciale per ottimizzazione EMC

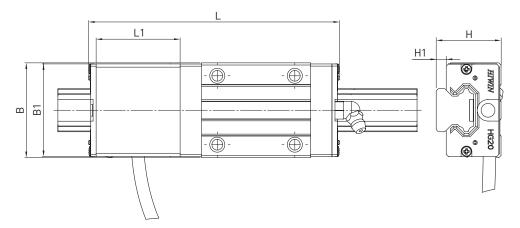
GW-IT-20-06


Guide Lineari

Serie PG

3.7.3 Codici d'ordine per la serie PG

Continuazione del codice d'ordine per serie PG


Note:

- ¹⁾ Rispetto alla rotaia standard MGR25 senza scanalatura, le viti di fissaggio sono M5 anzichè M6.
- ²⁾ Per la serie PG, il numero totale di carrelli per asse è specificato (tutti i carrelli dell'articolo ordinato).
- 3) La cifra 2 è anche un dato quantitativo, e significa che un elemento dell'articolo sopra descritto è composto da una coppia di guide. Nel caso di rotaie singole non è indicata alcuna cifra.Di default, le rotaie giuntate sono consegnate con giunzioni sfalsate.
- 4) Se non altrimenti specificato, il carrello viene fornito con protezione antipolvere standard (tenuta frontale standard e tenuta inferiore). Per una panoramica dei singoli sistemi di tenuta, s.v. a Pagina 22
- ⁵⁾ Per la versione con estremità libera la larghezza standard di cavo è 5000 mm.
- 6) Il display va ordinato separatamente
- 7) cfr. Capitolo 3.7.6

3.7.4 Dimensioni dei carrelli PG

La figura seguente illustra un carrello HGH20CA/HGH25CA. Si possono utilizzare anche i moduli con i carrelli HG20, HG25, QH20 e QH25.Le dimensioni complessive cambiano di conseguenza. Le dimensioni di tutti i carrelli sono evidenziate nella Tabella 3.112.

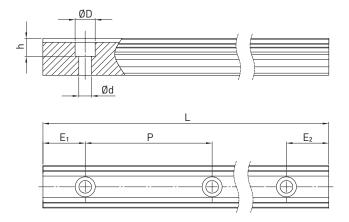


Tabella3.112 D	Tabella3.112 Dimensioni del carrello								
Serie/Taglia	L [mm]	L1 [mm]	B [mm]	B1 [mm]	H [mm]	H1 [mm]			
HG_20C	118.0	41.5	44	43.0	30	4.6			
HG_20H	132.7	41.5	44	43.0	30	4.6			
HG_25C	124.5	41.5	48	46.4	40	5.5			
HG_25H	145.1	41.5	48	46.4	40	5.5			
QH_20C	117.2	41.5	44	43.0	30	4.6			
QH_20H	131.9	41.5	44	43.0	30	4.6			
QH_25C	123.9	41.5	48	46.4	40	5.5			
QH_25H	144.5	41.5	48	46.4	40	5.5			

Unità: mm

3.7.5 Dimensioni delle rotaie PG

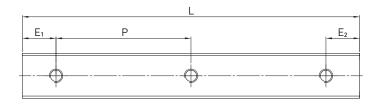

3.7.5.1 Rotaia con scanalatura, montaggio dall'alto



Tabella3.113	Dimensio	ni della ro	taia HGR_	R G1							
Serie/	Dimensioni della Rotaia [mm]						Lunghezza Max. L	Lunghezza Max.	E _{1/2} min	E _{1/2} max	Peso
Taglia	W _R	H _R	D	h	d	P	[mm]	$E_1 = E_2[mm]$	[mm]	[mm]	[kg/m]
HGR20R G1	20	17.5	9.5	8.5	6.0	60	4,000	3,900	7	53	2.05
HGR25R G1C	23	22.0	9.5	8.5	6.0	60	4,000	3,900	7	53	3.05

3.7.5.2 Rotaia con scanalatura, montaggio dal basso

Tabella3.114	Dimension	ni della rot	aia HGR_T	G1						
Serie/	Dimensioni della Rotaia [mm]						Lunghezza Max.	E _{1/2} min	E _{1/2} max	Peso
Taglia	W_R	H _R	S	h	P	[mm]	$E_1 = E_2 [mm]$	[mm]	[mm]	[kg/m]
HGR20T G1	20	17.5	M6	10	60	4,000	3,900	7	53	2.13

3.7.5.3 Coppie di serraggio delle viti di ancoraggio

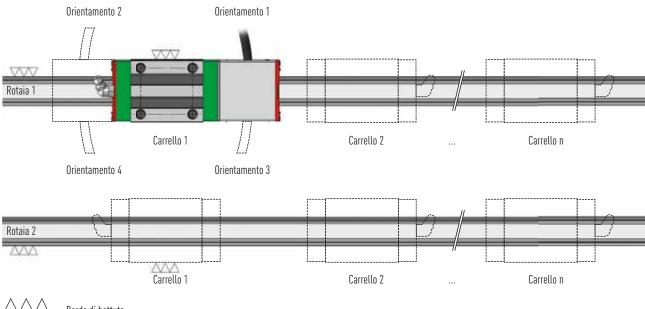

Il serraggio insufficiente delle viti di fissaggio compromette gravemente la precisione della guida lineare; di conseguenza, raccomandiamo le coppie di serraggio seguenti a seconda delle dimensioni delle viti.

Tabella3.115 Coppie di serraggio delle viti di fissaggio ai sensi ISO 4762-12.9								
Serie/Taglia Dimensioni vite Coppia [Nm] Serie/Taglia Dimensioni vite Coppia [Nm]								
HGR20R G1	M5 × 16	9	HGR25R G1C	M5 × 20	9			
HGR20T G1	HGR20T G1 M6 13							

3.7.6 Orientamento dell'encoder HIWIN MAGIC-PG

A seconda del codice ordine (capitolo 3.7.3) l'encoder HIWIN MAGIC-PG è disponibile con orientamenti da 1 a 4, come mostrato sotto. In assenza di specifiche richieste, l'encoder viene fornito con orientamento di default (orientamento 1).

In caso di più carrelli su una stessa rotaia o coppia di rotaie, l'encoder sarà montato sul carrello 1, rotaia 1, come indicato sotto. Se è necessario un orientamento particolare, la richiesta va fatta a livello di scheda di progettazione MAGIC-PG (www.hiwin.it).

Bordo di battuta

3.7.7 Specifiche del sistema di misura della posizione HIWIN MAGIC e HIWIN MAGIC-PG

Tabella3.116 proprietà elettriche e meccanic	ne HIWIN MAGIC e HIWIN MAGIC-PG	
	1 V _{PP} (analogico)	TTL (digitale)
Proprietà elettriche		
Specifiche del segnale in uscita	sin/cos, 1 V _{PP} (0.85 V _{PP} - 1.2 V _{PP})	Segnale di quadratura secondo RS422
Risoluzione	Infinita, periodo segnale 1 mm	1 µm
Precisione di ripetizione bidirezionale	0.003 mm	0.002 mm
Precisione assoluta	± 20 μm/m	
Segnale di riferimento 1)	Impulso periodico di indice ad una distanza di 1 r	nm
Angolo di fase	90° ± 0.1° el	90°
Componente CC	2.5 V ± 0.3 V	_
Fattore di distorsione	Tip. < 0.1 %	_
Tensione d'esercizio	5 V ± 5 %	
Consumo di energia	Tip. 35 mA, max. 70 mA	Tip. 70 mA, max. 120 mA
Velocità di misurazione max.	10 m/s	5 m/s
Classe EMC	3, ai sensi CEI 801	
Caratteristiche meccaniche		
Materiale dell'alloggiamento	Lega di alluminio, il fondo dell'encoder è in a	cciaio inox
Dimensioni dell'encoder MAGIC	L × P × H: 45 × 12 × 14 mm	
Lunghezza standard del cavo ²⁾	5 m	
Raggio di flessione min. cavo	40 mm	
Classe di protezione	IP67	
Temperatura di esercizio	0 °C to +50 °C	
Peso dell'encoder MAGIC	80 g	
Peso dell'encoder MAGIC-PG	80 g	
Carrelli idonei per MAGIC-PG	HG-20, HG-25, QH-20, QH-25	

¹⁾ Può essere utilizzato con interruttore di prossimità

²⁾ Per l'impiego in catene di energia consigliamo il nostro cavo encoder pre-montato con un connettore rotondo M17 (giunto, femmina) pre-montato su un lato, che corrisponde al connettore rotondo opzionale M17 (maschio) dell'encoder.Per ulteriori dettagli, contattare il referente HIWIN di fiducia.

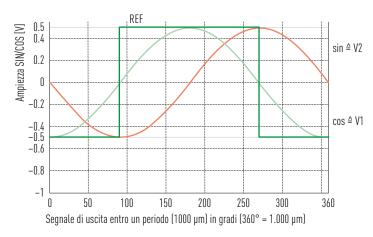
Tabella3.117 Proprietà della scala magnetica	
Prorietà	Scala magnetica (con nastro di copertura in acciaio inox)
Classe di precisione 1)	± 20 µm/m
Coefficiente di espansione lineare	11.5 × 10 ⁻⁶ m/K
Periodo	1 mm
Scala magnetica di spessore	1.70 ± 0.10 mm
Scala magnetica di spessore + nastro di protezione	1.85 ± 0.15 mm
Larghezza	10.05 ± 0.10 mm
Lunghezza massima	24 m
Rimanenza magnetica	> 240 mT
Passo dei poli (distanza polo nord/sud)	1mm
Singoli indici di riferimento	Opzionali
Materiale	Elastomeri, nitrile e EPDM
Intervallo di temperatura	da 0 °C a +50 °C
Peso	70 g/m
1) a 20 °C	

Banda magnetica separata (sinistra) senza nastro di protezione e integrata in una guida profilata (destra) con nastro di protezione in acciaio inox

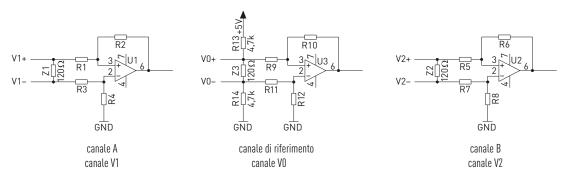
3.7.8 Cablaggio per sistema di misura del posizionamento MAGIC

3.7.8.1 Assegnazione dei cavi (variante analogica e digitale)

Viene utilizzato un cavo ad alta qualità a 8 conduttori (1 per ciascun segnale di V1+, V1-, V2+, V2- e V0+, V0- oppure A, \bar{A} , B, \bar{B} e Z, \bar{Z}) per la variante digitale adatto alla posa mobile.


Nelle catene portacavi consigliamo generalmente le nostre prolunghe preassemblate, che sono state concepite appositamente per l'impiego in queste linee. I cavi prolunga vengono forniti con un connettore rotondo su un'estremità (femmina) o personalizzati.

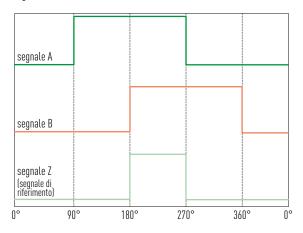
3.7.8.2 Segnale d'uscita del sistema di misura MAGIC (analogico)

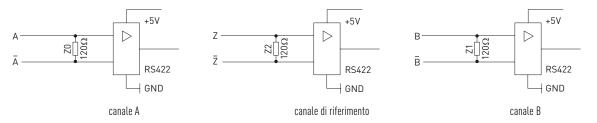

Segnale sin/cos 1 VPP

L'interfaccia HIWIN MAGIC sin/cos 1 VPP è basata sulle specifiche Siemens. Il periodo del segnale di uscita sinusoidale è di 1 mm. Il periodo del segnale di riferimento è di 1 mm.

Segnali analogici differenziali a valle dell'elettronica di lettura (versione analogica)

Elettronica di lettura raccomandata per segnale seno/coseno 1 VPP

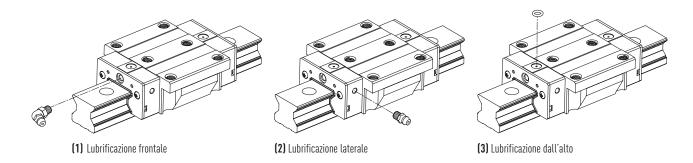



Uscita TTL (digitale)

I segnali sui canali A e B hanno uno sfasamento di 90° (secondo la specifica RS422 della norma DIN 66259). Resistenza terminale consigliata Z = 120 Ω . Segnali di uscita: A, $\bar{\text{A}}$, B, $\bar{\text{B}}$ e Z, $\bar{\text{Z}}$. Sono possibili come opzioni l'impulso di riferimento singolo e la definizione di una durata minima dell'impulso.

Segnali dell'encoder MAGIC (versione TTL)

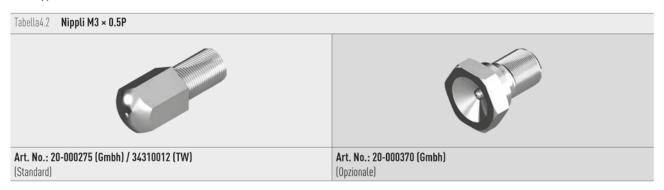
Elettronica di lettura raccomandata per segnale TTL


Guide Lineari

Accessori

4. Accessori

4.1 Adattatori per sistemi lubrificanti


La posizione standard del nipplo di lubrificazione di un carrello è quella frontale **(1)**. Il foro di lubrificazione opposto è chiuso da un grano. La lubrificazione può essere anche fatta attraverso uno dei quattro fori laterali **(2)** sull'unità di ricircolo oppure dall'alto **(3)**. Possono essere utilizzati nippli, adattatori o connettori ad innesto rapido.

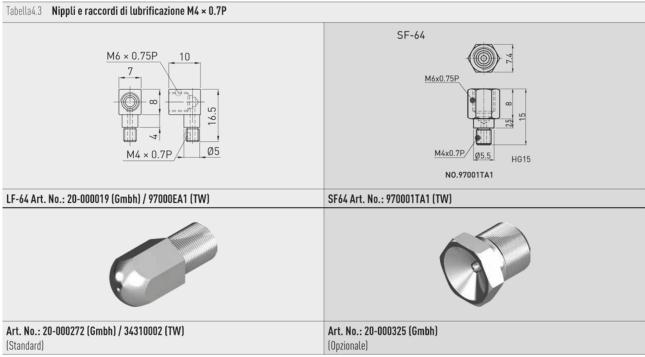
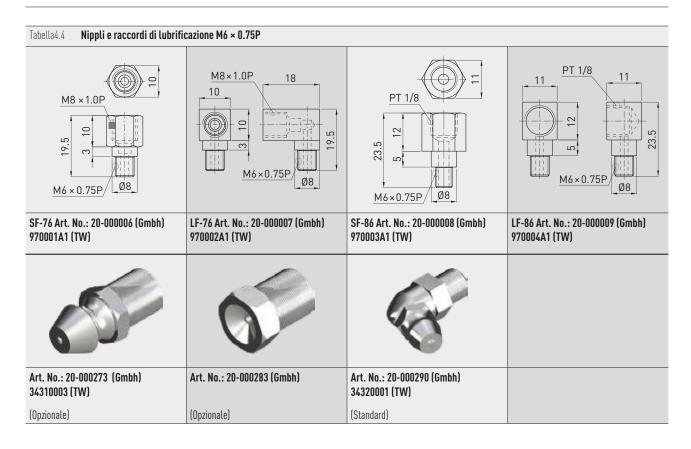
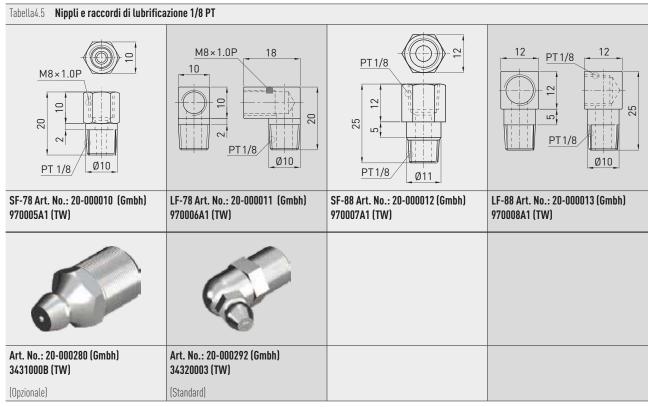


Tabella4.1 Riassunto tipi di carrello/grandezza filetto	
Tipo Carrello	Grandezza filetto frontale/laterale
HG_15	M4
HG_20, HG_25, HG_30, HG_35	M6 × 0.75
HG_45, HG_55, HG_65	1/8 PT
QH_15	M4
QH_20, QH_25, QH_30, QH_35	M6 × 0.75
QH_45	1/8 PT
EG_15	M4
EG_20, EG_25, EG_30, EG_35	M6 × 0.75
QE_15	M4
QE_20, QE_25, QE_30, QE_35	M6 × 0.75
CG_20	M3
CG_25, CG_30, CG_35	M6 × 0.75
WE_17	M3
WE_21, WE_27, WE_35, QW_21, QW_27, QW_35	M6 × 0.75
WE_50	1/8 PT
MG_15	M3
RG_15, RG_20	M4
RG_25, RG_30, RG_35	M6 × 0.75
RG_45, RG_55, RG_65	1/8 PT
QR_25, QR_30, QR_35	M6 × 0.75
QR_45	1/8 PT

4.1.1 Nippli e raccordi di lubrificazione

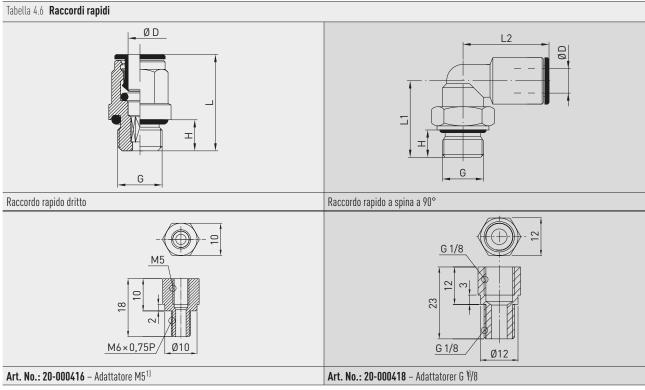




I codici degli articoli indicati si intendono validi per la protezione antipolvere standard. I codici degli articoli per protezioni antipolvere opzionali sono da richiedersi.

Guide Lineari

Accessori



I codici degli articoli indicati si intendono validi per la protezione antipolvere standard. I codici degli articoli per protezioni antipolvere opzionali sono da richiedersi.

4.1.2 Raccordi rapidi

Gli adattatori illustrati sono necessari per raccordi rapidi con filettatura M5 o G 1/8.I raccordi rapidi con filettatura M6 sono awvitati nel blocco senza adattatore

Tabella 4.7 Dime	nsioni dei raccordi r	apidi					
Numero articolo	G	Ø D	Shape	Н	L	L1	L2
20-000439	M5 × 0.8	4	Dritto	4	20.5	_	_
20-000462	M5 × 0.8	6	Dritto	4	22.5	_	_
20-000465	M5 × 0.8	4	Angolato	4	_	14.5	18
20-000466	M5 × 0.8	6	Angolato	4	_	14.5	21
8-12-0127	M6 × 0.75	4	Dritto	5	23.5	_	_
20-000463	M6 × 0.75	6	Dritto	4	22.5	_	_
8-12-0128	M6 × 0.75	4	Angolato	5	_	15.5	18
8-12-0138	M6 × 0.75	6	Angolato	5	_	15.5	21
8-12-0131 (Gmbh) SHC4R8P (TW)	G 1/8	4	Dritto	6	20.0	_	_
8-12-0136 (Gmbh) SHC6R8P (TW)	G 1/8	6	Dritto	6	24.0	_	_
8-12-0130 (Gmbh) LHC4R8P (TW)	G 1/8	4	Angolato	6	_	20.0	20
8-12-0137 (Gmbh) LHC6R8P (TW)	G 1/8	6	Angolato	6	_	20.0	21

I codici degli articoli indicati si intendono validi per la protezione antipolvere standard. I codici degli articoli per protezioni antipolvere opzionali sono da richiedersi.

Istruzioni di assemblaggio

5. Istruzioni di assemblaggio Guide Lineari

5.1 Lubrificazione e informazioni di base

I sistemi lineari devono essere adeguatamente forniti di lubrificante per garantire il corretto funzionamento e una lunga durata.

Queste istruzioni di lubrificazione hanno lo scopo di aiutare l'utente nella scelta dei lubrificanti e delle quantità di lubrificante adeguate e nella determinazione degli intervalli di lubrificazione appropriati.

Le informazioni qui fornite non esonerano l'utilizzatore dall'obbligo di effettuare prove pratiche per verificare gli intervalli di lubrificazione specifici e di effettuare le regolazioni necessarie. Dopo ogni processo di lubrificazione è necessario verificare se la parte della macchina è ancora adequatamente lubrificata (controllo del velo protettivo di lubrificante).

I Lubrificanti

- riducono l'usura
- proteggono dallo sporco
- proteggono dalla corrosione

Il lubrificante è un elemento progettuale e deve essere considerato già nella fase di progetto di una macchina. Nella scelta del lubrificante dovranno essere prese in considerazione la massima variazione di temperatura di lavoro e le condizioni operative e ambientali.

5.2 Sicurezza

ATTENZIONE!

Scelta errata del lubrificante

L'uso di un lubrificante sbagliato può causare danni alle cose e inquinare l'ambiente.

- Utilizzare il tipo di lubrificante corretto (grasso, olio) come specificato in queste istruzioni di montaggio!
- Osservare le schede di sicurezza del produttore!

5.2.1 Uso corretto dei lubrificanti

Evitare, per quanto possibile, il contatto prolungato e ripetuto con la pelle. Nell'eventualità, risciacquare con acqua e sapone. Applicare nel caso sia necessario, una crema mani al termine del lavoro.

Se necessario, indossare indumenti protettivi resistenti all'olio (ad es. guanti, grembiule).

Non lavarsi le mani con petrolio, solventi o lubrificanti refrigeranti che possono essere o sono già mescolati con acqua.

L'olio nebulizzato deve essere aspirato nel punto in cui si forma.

Per evitare il contatto con gli occhi è necessario indossare occhiali protettivi.

Se il lubrificante dovesse comunque entrare a contatto con gli occhi, sciacquare la zona interessata con abbondante acqua. Se l'irritazione degli occhi persiste, consultare un oculista.

In nessun caso si deve indurre il vomito se il lubrificante viene ingoiato accidentalmente. Rivolgersi immediatamente ad un medico. Di norma sono disponibili schede di sicurezza per i lubrificanti, ai sensi della normativa 91/155/CEE.

Qui troverete informazioni dettagliate sulla tutela della salute e dell'ambiente e sulla prevenzione degli incidenti.

La maggior parte dei lubrificanti è dannosa per l'acqua. Per questo motivo i lubrificanti non devono mai penetrare nel suolo, nell'acqua o nelle fognature.

5.2.2 Indicazioni di sicurezza per lo stoccaggio dei lubrificanti

I lubrificanti devono essere conservati in imballaggi ben chiusi in un luogo fresco e asciutto. Devono essere protetti dalla luce solare diretta e dal gelo.

I lubrificanti non devono essere conservati assieme a:

- Ciho
- Agenti ossidanti

5.3 Sedi per raccordi di lubrificazione

I carrelli HIWIN offrono configurazioni per l'installazione di un raccordo di lubrificazione:

- Sulla parte anteriore
- Lateralmente
- Dall'alto

Non tutti i carrelli sono dotati di raccordi di lubrificazione

5.3.1 Raccordo di lubrificazione sulla parte anteriore

È possibile installare un raccordo di lubrificazione su entrambi i lati del blocco. Ogni raccordo di lubrificazione non utilizzato è sigillato con una vite di tenuta. Questa è la configurazione standard HIWIN.

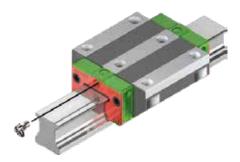


Fig. 5.1 Raccordo di lubrificazione sulla parte anteriore

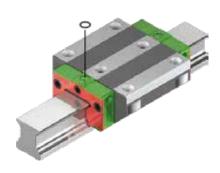
5.3.2 Raccordo di lubrificazione sul fianco

ATTENZIONE!

L'apertura non corretta del foro di lubrificazione causa il danneggiamento del carrello!

 Si consiglia di consultare HIWIN per la realizzazione del foro. E' consigliabile in fase d'ordine, richiedere la predisposizione

Fig. 5.2 Raccordo di lubrificazione sul fianco


Il carrello ha quattro pre fori, uno su ciascun lato di ognuna delle due testate. Per poter applicare il raccordo per la lubrificazione, sono necessarie due operazioni, la prima la foratura completa del pre-foro esistente, la seconda la raschiatura dello stesso. Queste due operazioni sono necessarie per tutte le serie HG, QH, EG, QE, CG, WE, QW, RG e QR.

La profondità massima della filettatura secondo la tabella 8.1 non deve essere superata. Pulire quindi il foro, che deve essere privo di trucioli e altre impurità.

Infine, il raccordo di lubrificazione laterale deve essere aperto alla base del foro con un perforatore metallico caldo.

Istruzioni di assemblaggio

5.3.3 Raccordo di lubrificazione in alto

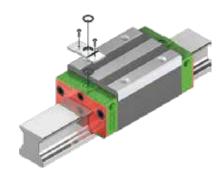
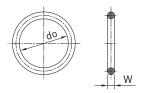


Fig. 5.3 Raccordo di lubrificazione in alto


Fig. 5.4 Raccordo di lubrificazione in alto (HGH, CGH, RGH)

In alternativa, il carrello può essere lubrificato dall'alto. In questo caso si utilizza un O-ring come guarnizione. Vedere la Tabella 5.1 per le dimensioni dell'O-ring. Se si ordina il carrello con l'opzione di lubrificazione dall'alto selezionata, il foro di lubrificazione sarà aperto e l'O-ring richiesto sarà incluso. Se il carrello viene ordinato senza questa opzione, il foro deve essere prima aperto. Per i modelli di carrelli "alti", verrà fornito anche un adattatore con due o-ring, come in figura.

Nella svasatura per l'O-ring è presente un'ulteriore rientranza.

♀ Aprire l'incavo con una punta da 0,8 mm di diametro fino ad una profondità massima di T_{max} secondo la tabella 8.2

Una volta aperti, i fori per la lubrificazione dall'alto non possono essere successivamente chiusi con un tappo a vite.

 $\textit{Fig.} 5.5 \ \textbf{O-ring per coprire il raccordo di lubrificazione sulla parte superiore } \\$

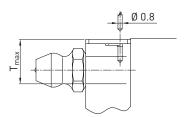


Fig. 5.6 Profondità massima di perforazione Tmax

Tabella 5.1 Specifiche dell'O-ring per coprire il raccordo di lubrificazione sulla parte superiore

Serie/Dimensioni	0-ring	Foro di lubrificazione in alto			
	Numero articol	0	do [mm]	W [mm]	Prof. Max. Tmax
	TW	GMBH	do [mm]	do [mm]	[mm]
HG/QH_15	3451001B	20-000386	2.5 ± 0.15	1.5 ± 0.15	3.75
HG/QH_20	34510010	20-000387	4.5 ± 0.15	1.5 ± 0.15	5.70
HG/QH_25	34510010	20-000387	4.5 ± 0.15	1.5 ± 0.15	5.80
HG/QH_30	34510010	20-000387	4.5 ± 0.15	1.5 ± 0.15	6.30
HG/QH_35	34510010	20-000387	4.5 ± 0.15	1.5 ± 0.15	8.80
HG/QH_45	34510010	20-000387	4.5 ± 0.15	1.5 ± 0.15	8.20
HG_55	34510010	20-000387	4.5 ± 0.15	1.5 ± 0.15	11.80
HG_65	34510010	20-000387	4.5 ± 0.15	1.5 ± 0.15	10.80
EG/QE_15	3451001B	20-000386	2.5 ± 0.15	1.5 ± 0.15	6.90
EG/QE_20	3451001B	20-000387	4.5 ± 0.15	1.5 ± 0.15	8.40
EG/QE_25	3451001B	20-000387	4.5 ± 0.15	1.5 ± 0.15	10.40
EG/QE_30	3451001B	20-000387	4.5 ± 0.15	1.5 ± 0.15	10.40
EG/QE_35	3451001B	20-000387	4.5 ± 0.15	1.5 ± 0.15	10.80
CG_15	3451001B	20-000386	2.5 ± 0.15	1.5 ± 0.15	3.75
CG_20	3451001C	20-000387	4.5 ± 0.15	1.5 ± 0.15	5.70
CG_25	3451001C	20-000387	4.5 ± 0.15	1.5 ± 0.15	5.80
CG_30	3451001C	20-000387	4.5 ± 0.15	1.5 ± 0.15	6.30
CG_35	3451001C	20-000387	4.5 ± 0.15	1.5 ± 0.15	8.80
CG_45	3451001C	20-000387	4.5 ± 0.15	1.5 ± 0.15	8.20
WE_21	3451001C	20-000386	2.5 ± 0.15	1.5 ± 0.15	4.20
WE_27	3451001C	20-000387	4.5 ± 0.15	1.5 ± 0.15	5.80
WE/QW_35	3451001C	20-000387	4.5 ± 0.15	1.5 ± 0.15	7.60
QW_21	3451000W	20-000376	7.5 ± 0.15	1.5 ± 0.15	4.20
QW_21	3451000W	20-000376	7.5 ± 0.15	1.5 ± 0.15	5.80
RG_15	3451001B	20-000386	2.5 ± 0.15	1.5 ± 0.15	3.45
RG_20	3451001B	20-000386	2.5 ± 0.15	1.5 ± 0.15	4.00
RG/QR_25	3451000W	20-000376	7.5 ± 0.15	1.5 ± 0.15	5.80
RG/QR_30	3451000W	20-000376	7.5 ± 0.15	1.5 ± 0.15	6.20
RG/QR_35	3451000W	20-000376	7.5 ± 0.15	1.5 ± 0.15	8.65
RG/QR_45	3451000W	20-000376	7.5 ± 0.15	1.5 ± 0.15	9.50
RG_55	3451000W	20-000376	7.5 ± 0.15	1.5 ± 0.15	11.60
RG_65	3451000W	20-000376	7.5 ± 0.15	1.5 ± 0.15	14.50

Potrebbe essere necessario utilizzare un distanziatore (adattatore di lubrificazione HIWIN) per montare il sistema di lubrificazione.

Istruzioni di assemblaggio

5.3.4 Distanziatori (adattatore di lubrificazione)

Nelle serie HG, RG e CG (modelli HGH, RGH e CGH) devono essere montati dei distanziali (adattatore di lubrificazione TCN, Top-CoNnector), per compensare la differenza di altezza tra il sistema di ricircolo e la superficie di montaggio del carrello. Gli adattatori vengono forniti solo assemblati, l'O-ring appropriato è incluso nell'ordine di questa opzione.

Disponibilità dell'adattatore di lubrificazione TCN:

- ▶ HG 25, HG 30, HG 35
- ▶ RG_25, RG_30, RG_35, RG_45, RG_55
- ▶ CG_15, CG_20, CG_25, CG_30, CG_35, CG_45

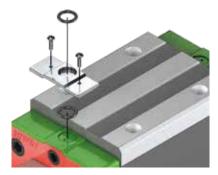


Fig. 5.7 Struttura dell'adattatore di lubrificazione

5.4 Impiego di un sistema di lubrificazione centralizzata

Si consiglia di eseguire la lubrificazione iniziale (vedi Capitolo 5.12) separatamente prima del collegamento ad un impianto di lubrificazione centrale, utilizzando un ingrassatore manuale. È inoltre importante assicurarsi che tutti i tubi e gli elementi di raccordo siano riempiti di lubrificante e non contengano sacche d'aria.

Si devono evitare tubazioni lunghe e diametri di tubo stretti. I tubi devono essere installati in pendenza. Il conteggio degli impulsi risulta dalle quantità parziali e dalle dimensioni del distributore a pistone.

Inoltre, devono essere rispettate le norme del produttore del sistema di lubrificazione.

5.5 Pressione di lubrificazione

Le guide lineari HIWIN possono essere lubrificate con olio, grasso o grasso a bassa viscosità, a seconda dell'applicazione specifica. La pressione di lubrificazione richiesta dipende dalle dimensioni, dal lubrificante, dalla lunghezza della linea di alimentazione e dal tipo di raccordo di lubrificazione utilizzato.

Pressione di lubrificazione minima sul carrello:

- ▶ Grasso o grasso a bassa viscosità: 6 bar
- Olio lubrificante: 3 bar

La pressione di lubrificazione massima consentita per il carrello è 30 bar.

ATTENZIONE!

Un'eccessiva pressione di lubrificazione o quantità di lubrificante possono danneggiare il carrello.

Le guarnizioni su carrelli con guarnizioni doppie, guarnizioni SW o guarnizioni ZWX potrebbero essere soggette a questo inconveniente

- Eseguire la lubrificazione secondo le istruzioni di montaggio.
- Assicurarsi di utilizzare i giusti livelli di pressione di lubrificazione e quantità di lubrificante.

5.6 Selezione del lubrificante

Come lubrificanti si possono utilizzare oli, grassi o grassi a bassa viscosità. Vengono utilizzati gli stessi lubrificanti utilizzati per i cuscinetti antifrizione. Di regola, la scelta di un lubrificante e il metodo di alimentazione possono essere modificati per adattarsi alla lubrificazione degli altri componenti della macchina.

Essenzialmente, la scelta di un lubrificante dipende dalla temperatura di esercizio e da vari fattori legati al funzionamento, come ad esempio il carico, le vibrazioni, le oscillazioni o le applicazioni a corsa breve. Anche requisiti particolari, come l'impiego in combinazione con mezzi forti o aggressivi, in camere bianche, sottovuoto o nell'industria alimentare, devono essere presi in considerazione.

Lubrificazione con grasso

Per la lubrificazione a grasso si consigliano grassi lubrificanti per cuscinetti volventi e cuscinetti ad attrito a base di olio minerale e con addensanti secondo la norma DIN 51825 (K1K, K2K). In applicazioni pesanti si consiglia di utilizzare additivi EP (KP1K, KP2K), classe 1 o 2 NLGI. L'utilizzo di grassi di altre classi di consistenza è possibile previa approvazione del fornitore di lubrificanti.

Lubrificazione con grasso a bassa viscosità

Nei sistemi di lubrificazione centralizzata, sono spesso utilizzati i grassi a bassa viscosità, in quanto si distribuiscono in modo più efficace in tutto il sistema grazie alla loro ridotta consistenza.

Lubrificazione ad olio

Gli oli lubrificanti offrono il vantaggio di una distribuzione più uniforme e raggiungono le superfici di contatto in modo più efficace. Tuttavia, per le loro proprietà, tendono a fuoriuscire con maggior facilità dai carrelli, causando, in alcuni casi, come ad es. in montaggi verticali, la contaminazione delle parti sottostanti della macchina. Per questo motivo sono necessarie quantità di lubrificante più elevate rispetto alla lubrificazione a grasso. Di regola, la lubrificazione a olio è adatta solo quando si utilizza un impianto di lubrificazione centralizzato o per prodotti dotati di un'unità di lubrificazione.

5.6.1 Lubrificanti consigliati

Nella tabella sottostante sono riportati esempi di applicazioni e dei relativi lubrificanti più idonei.

ATTENZIONE!

L'uso del grasso sbagliato può causare danni!

I grassi con particelle solide come la grafite o il MOS2 possono causare danni.

▶ Non utilizzare grassi contenenti particelle solide come grafite o MoS₂2!

Le informazioni sui lubrificanti servono a titolo esemplificativo e come aiuto nella scelta.

Altri lubrificanti possono essere selezionati dopo aver chiarito la specifica applicazione con il fornitore di lubrificanti. Inoltre, devono essere rispettate le istruzioni del produttore del sistema di lubrificazione.

Istruzioni di assemblaggio

Tabella 5.2 Lubrificanti consigliati - grasso, grasso e olio a bassa viscosità

Tipo di	Grasso		Grasso a bassa	viscosità	Olio			
Applicazione	Produttore	Nome	Produttore	Nome	Produttore	Nome		
Standa rd	HIWIN	G05	Klüber Lubrica- tion München	MICROLUBE GB 00	Klüber Lubrica- tion München	Klüberoil GEM 1-150 N		
	Klüber Lubrica- tion München	MICROLUBE GL 261	Mobil	Mobilux EP 004	FUCHS	GEARMASTER CLP 320		
	Mobil	Mobilux EP 1	FUCHS	GEARMASTER LI 400	FUCHS	RENOLIN CLP 150		
	FUCHS	LAGERMEISTER BF 2	FUCHS	RENOLIT EPLITH 00	_	_		
	LUBCON	Turmogrease CAK 2502	_	_	_	_		
	FUCHS	RENOLIT LZR 2 H	_	_	_	_		
	Klüber Lubrica- tion München ¹⁾	ISOFLEX TOPAS AK 50 1)	_	_	_	_		
Per	HIWIN	G01	Si consiglia di consultare un produttore di lubrificanti per quanto riguarda l'uso di questi lubrificanti per applicazioni pesanti.					
applicazioni	Klüber Lubrica- tion München	Klüberlub BE 71-501						
	FUCHS	LAGERMEISTER EP 2						
	LUBCON	TURMOGREASE Li 802 EP						
	FUCHS	RENOLIT LZR 2 H						
Per applicazioni	HIWIN	G02	Si consiglia di co produttore di lub		Klüber Lubrica- tion München	Klüber Tyreno Fluid E-95V		
in camera bianca	Klüber Lubrica- tion München	ISOFLEX TOPAS NCA 152	quanto riguarda lubrificanti per a		Mobil	Mobilgear 626		
	FUCHS	GLEITMO 591	pesanti.		FUCHS	RENOLIN CLP 100		
Per	HIWIN	G03	_	_	_	_		
applicazioni in camera bianca ad alta velocità	Klüber Lubrica- tion München	ISOFLEX TOPAS NCA 52	-	_	-	_		

¹⁾ Consigliato per la serie MG

Tabella 5.3 Lubrificanti consigliati - grasso, grasso e olio a bassa viscosità (continua)

Tipo di	Grasso		Grasso a bassa	viscosità	Olio		
Applicazione	Produttore	Nome	Produttore	Nome	Produttore	Nome	
Alte velocità	HIWIN	G04	Klüber Lubrica- tion München	ISOFLEX TOPAS NCA 5051	Klüber	Klüberoil GEM 1-46 N	
	Klüber Lubrica- tion München	ISOFLEX NCA 15	Mobil	Mobilux EP 004	FUCHS	RENOLIN ZAF B 46 HT	
	LUBCON	Turmogrease Highspeed L 252	FUCHS	GEARMASTER LI 400	-	-	
	FUCHS	RENOLIT HI-Speed 2	FUCHS	RENOLIT SF 7-041	-	-	
Per applicazioni	Klüber Lubrica- tion München	Klübersynth UH1 14-151	Klüber Lubrica- tion München	Klübersynth UH1 14-1600	Klüber	Klüberoil 4 UH1-68 N	
nell'industria alimentare ai sensi	Mobil	Mobilgrease FM 102	Mobil	Mobilgrease FM 003	_	-	
USDA H1	FUCHS	GERALYN 1	FUCHS	GERALYN 00	_	_	

Descrizione dei tipi di applicazione

Applicazioni standard

Carico: max. 15% del coefficiente di carico dinamico Intervallo di temperatura: da -10 °C a + 80 °C Velocità: <1 m/s

Per applicazioni pesanti

Carico: max. 50% del coefficiente di carico dinamico Intervallo di temperatura: da 0 °C a + 80 °C Velocità: < 1 m/s

Per applicazioni in camera bianca

Carico: max. 50% del coefficiente di carico dinamico Intervallo di temperatura: da -10 °C a + 80 °C $^{\circ}$ Velocità: < 1 m/s

Per applicazioni in camera bianca ad alta velocità

Carico: max. 50% del coefficiente di carico dinamico Intervallo di temperatura: da -10 °C a + 80 °C Velocità: <1 m/s

Applicazioni con alte velocità

Carico: max. 50% del coefficiente di carico dinamico Intervallo di temperatura: da -10 °C a + 80 °C Velocità: < 1 m/s

Applicazioni nell'industria alimentare ai sensi USDA H1

Carico: max. 15% del coefficiente di carico dinamico Intervallo di temperatura: da -10 °C a + 80 °C Velocità: < 1 m/s

5.7 Lubrificanti HIWIN

Tabella 5.4 Panoramica dei grassi HIWIN

Tipo di	Utilizzo	Numero articolo		
grasso		Cartuccia da 70 g	Cartuccia da 400 g	
G01	Per applicazioni pesanti	GMBH 20-000335 TW 7M000JA1	GMBH 20-000336 TW 7M0007A1	
G02	Per applicazioni in camera bianca	GMBH 20-000338 TW 7M0009A1	GMBH 20-000339 TW 7M000AA1	
G03	Per applicazioni in camera bianca ad alta velocità	GMBH 20-000341 TW 7M000CA1	GMBH 20-000342 TW 7M000DA1	
G04	Applicazioni con alte velocità	GMBH 20-000344 TW 7M000KA1	GMBH 20-000345 TW 7M000GA1	
G05	Grasso standard	GMBH 20-000347 TW 7M000LA1	GMBH 20-000348 TW 7M000MA1	

5.8 Miscibilità

Controllare sempre la miscibilità dei diversi lubrificanti. Si possono mescolare oli lubrificanti a base di olio minerale della stessa classificazione (p.es. CL) e di viscosità simile (al massimo una differenza di classe).

I grassi possono essere miscelati se il loro olio base e il tipo di addensante sono uguali. La viscosità dell'olio base deve essere simile. La differenza massima nella classe NLGI è di un livello.

L'uso di lubrificanti diversi da quelli elencati può significare intervalli di lubrificazione più brevi e prestazioni ridotte. Possono verificarsi anche reazioni chimiche tra materie plastiche, lubrificanti e conservanti.

Tabella 5.5 Miscibilità dei grassi HIWIN

		G01	G02	G03	G04	G05
G01					•	•
G02						
G03						
G04		•				
G05		•		•		•
•	miscibile					

parzialmente miscibile

Tabella 5.6 Compatibilità dei prodotti fondamentalmente lubrificati con i grassi HIWIN

	G01	G02	G03	G04	G05
QH, QE, QW, QR	•				

miscibile

parzialmente miscibile

Suggerimento:

Se si usano lubrificanti solo parzialmente miscibili, il vecchio grasso dovrebbe essere eliminato il più possibile prima dell'introduzione del nuovo grasso. La quantità di rilubrificazione del nuovo grasso deve essere aumentata temporaneamente. Se si usano lubrificanti immiscibili, il vecchio grasso deve essere completamente rimosso prima di introdurre il nuovo grasso.

5.9 Pompe per ingrassaggio e adattatori di lubrificazione

A1: Accoppiamento idraulico

Adatto per ingrassatori conici ai sensi DIN 71412, diametro esterno 15 mm

Fig. 5.8 **A1**

A3: Prolunga cava con adattatore di lubrificazione

Adatto per ingrassatori a sfera ai sensi DIN 3402, diametro esterno 6 mm

Fig. 5.10 A3

A2: Prolunga cava

Adatto per ingrassatori conici o a sfera ai sensi DIN 71412/ DIN 3402, diametro esterno 10 mm

Fig. 5.9 **A2**

A4: Prolunga a sfera

Adatto per ingrassatori ad imbuto ai sensi DIN 3405, diametro esterno 6 mm

Fig. 5.11 **A4**

Fig. 5.12 **A5**

A6: Prolunga a punta angolata con adattatore

Fig. 5.13 **A6**

Set di adattatore di lubrificazione e ugelli

Fig. 5.14 Adattatore di lubrificazione e ugelli A3, A4, A5, A6

Set GN-400C: Pompa per ingrassaggio di grandi dimensioni e adattatori A1, A2

Fig. 5.15 **GN-400C**

Set GN-80M: Pompa per ingrassaggio piccola e adattatori A1, A2

Fig. 5.16 **GN-80M**

Istruzioni di assemblaggio

5.10 Lubrificazione standard alla consegna

A seconda del gruppo di prodotti, le guide lineari HIWIN vengono fornite o protette, con lubrificazione di base o con lubrificazione iniziale.

- ▶ I carrelli protetti sono completamente rivestiti con un olio anticorrosivo. Prima della messa in servizio deve essere effettuata una prima lubrificazione secondo il Capitolo 5.11.
- I carrelli con lubrificazione di base vengono forniti con una quantità di grasso ridotta. I canali di lubrificazione sono in gran parte privi di grasso di lubrificazione. Ciò facilità il cambio del lubrificante e consente il passaggio dalla lubrificazione a grasso a quella ad olio. La lubrificazione di base è sufficiente per la messa in servizio della guida lineare. Una volta che è stata messa in funzione con successo, una prima lubrificazione deve avvenire secondo il Canitolo 5.11.
- I blocchi con lubrificazione iniziale vengono forniti con la quantità di grasso consigliata secondo il Capitolo 5.13
 (a richiesta).

Tabella 5.7 Lubrificazione standard per i carrelli montati su rotaie

Serie	Stato di lubrificazione
HG, EG, CG, WE, QH, QE, QW, QR	Lubrificazione iniziale
RG, MG	Conservato

Tabella 5.8 Lubrificazione standard per i carrelli non montati su rotaie

Serie	Stato di lubrificazione
HG, EG, CG, WE, RG, MG	Conservato
QH, QE, QW, QR	Lubrificazione di base

Per la lubrificazione di base delle guide lineari viene utilizzato un grasso adatto a cuscinetti volventi e scorrevoli con olio minerale come olio base e addensanti ai sensi DIN 51825 (K2K), classe 2 NLGI. Viscosità dell'olio base per QR: 100 mm2/s a 40 °C; viscosità dell'olio base per QH, QE, QW: 200 mm2/s a 40 °C.

Lo stato di lubrificazione può discostarsi dallo standard qui menzionato, lo stato di lubrificazione nei documenti del relativo ordine è vincolante.

5.11 Lubrificazione iniziale alla messa in servizio

ATTENZIONE!

Pericolo di danneggiamento delle guide lineari in caso di lubrificazione mancante o errata!

Una lubrificazione iniziale mancante o una quantità eccessiva di lubrificante o una pressione di lubrificazione eccessiva possono danneggiare o distruggere il prodotto.

- Non mettere mai in funzione la guida lineare senza una prima lubrificazione!
- Rispettare la procedura indicata per evitare di danneggiare il prodotto!

Con la lubrificazione iniziale i carrelli vengono forniti con la quantità di grasso necessaria per raggiungere gli intervalli di lubrificazione specificati. La prima operazione di lubrificazione, obbligatoria, consente di raggiungere gli intervalli di lubrificazione desiderati. Una volta eseguita, i canali di lubrificazione sono completamente riempiti di grasso quindi non è più possibile passare dalla lubrificazione a grasso a quella ad olio senza una completa pulizia del carrello.

5.11.1 Prestazioni

- ▶ Applicare la quantità di grasso indicata nel Capitolo 5.13 premendo lentamente la pompa per ingrassare.
- ▶ Spostare il carrello di circa tre volte la sua lunghezza.
- Ripetere questo processo altre due volte.
- Spostare il carrello lungo tutto il percorso di corsa e controllare l'intera guida profilata per vedere se è possibile rilevare un film di lubrificante.

Il processo di lubrificazione iniziale della guida lineare è stato eseguito.

Se non è possibile rilevare un film di lubrificante lungo tutta la lunghezza della guida profilata, aumentare la quantità di lubrificante utilizzato.

5.11.2 Lubrificazione iniziale per applicazioni a corsa breve

Per applicazioni a corsa breve (corsa < 2 × lunghezza del carrello), la lubrificazione iniziale deve essere effettuata come segue.

Corsa < 2 × lunghezza del carrello:

Installare i collegamenti di lubrificazione su entrambi i lati del carrello ed eseguire la lubrificazione come indicato nel Capitolo 5.11.1 per il collegamento di lubrificazione corrispondente.

Corsa < 0,5 × lunghezza del carrello: Consultare HIWIN.

5.11.3 Lubrificazione iniziale - Serie MG

Per la grandezza 15 è disponibile un ingrassatore per la lubrificazione a grasso nel caso del tipo miniaturizzato MG. Per le grandezze 5, 7, 9 e 12 si consiglia di utilizzare un grasso spray adatto (ad es. FUCHS PLANTO Multispray S).

- Applicare il lubrificante in modo uniforme sulle piste dei cuscinetti a sfera per tutta la lunghezza della guida profilata.
- Spostare il carrello lungo tutta la corsa.
- Se necessario, rimuovere il grasso in eccesso.
- ▶ Il processo di lubrificazione iniziale della guida lineare MG è stato eseguito.

Se è richiesta una resistenza minima allo spostamento o le condizioni ambientali sono molto pulite, si consiglia di lubrificare la serie MG con olio (vedi Cap.5.13.4).

Istruzioni di assemblaggio

5.12 Cambiare lubrificante

Prima di passare ad un lubrificante diverso, l'intero carrello deve essere pulito a fondo.

La rimozione del lubrificante esistente è necessaria solo se i lubrificanti non sono miscibili.

5.13 Quantità di lubrificante

Le quantità di lubrificante indicate di seguito sono valori di riferimento, che possono variare a seconda delle condizioni ambientali.

Se le guide lineari vengono montate in verticale, lateralmente o con la guida in alto, le quantità di rilubrificazione devono essere aumentate di circa 50.

5.13.1 Quantità di lubrificante per la lubrificazione a grasso

Tabella 5.9 Quantità di lubrificante per la lubrificazione a grasso - serie HG, QH, EG, QE, CG, WE, QW, RG, QR

Dimensione	Quantità parziale di lubrificazione iniziale [cm³]			Quantità di rilubrificazione [cm³]		
	Carico medio (S)	Per applicazioni pesanti (C)	Per applicazioni superpesanti (H)	Carico medio (S)	Per applicazioni pesanti (C)	Per applicazioni pesanti (C)
15, 17	0.2 (3 ×)	0.3 (3 ×)	_	0,2	0,3	_
20, 21	0.3 (3×)	0.5 (3 ×)	0.7 (3 ×)	0,3	0,5	0,7
25, 27	0.4 (3 ×)	0.8 (3 ×)	1.0 (3 ×)	0,4	0,8	1,0
30	0.6 (3×)	1.3 (3 ×)	1.7 (3 ×)	0,6	1,3	1,7
35	0.8 (3 ×)	1.9 (3 ×)	2.4 (3 ×)	0,8	1,9	2,4
45	_	3.8 (3 ×)	4.6 (3 ×)	_	3,8	4,6
50, 55	_	6.3 (3 ×)	7.7 (3 ×)	_	6,3	7,7
65	_	10.0 (3 ×)	13.5 (3 ×)	_	10,0	13,5

Tabella 5.10 Quantità di lubrificante per la lubrificazione a grasso - serie MG

Dimensione			Quantità di rilubrificazione [cm³]		
			Carico medio (C)	Carico elevato (H)	
MGN15	0.04 (3 ×)	0.06 (3 ×)	0,04	0,06	
MGW15	0.07 (3 ×)	0.09 (3 ×)	0,07	0,09	

5.13.2 Quantità di lubrificante per la lubrificazione a grasso a bassa viscosità

Le quantità per la lubrificazione con grasso a bassa viscosità sono identiche alle quantità di lubrificante per la lubrificazione a grasso.

5.13.3 Dimensioni dei distributori a pistone per unità di alimentazione (sistemi a una linea) per la lubrificazione con grasso a bassa viscosità

Per garantire una lubrificazione sufficiente, è necessario rispettare le seguenti dimensioni minime per i distributori a pistone. L'intervallo tra i singoli impulsi di lubrificazione risulta dalla quantità di rilubrificazione, dall'intervallo di rilubrificazione e dalla dimensione del distributore a pistone:

Intervallo fra gli impulsi di lubrificazione [km] = $\frac{\text{dimensione del distributore a pistone [cm^3]}}{\text{Quantità di rilubrificazione [cm^3]}} \times \text{Intervallo di rilubrificazione [km]}$

5.13.4 Quantità di lubrificante per la lubrificazione ad olio

Quando si utilizza un sistema di lubrificazione centralizzata, assicurarsi che tutti i tubi e gli elementi di raccordo siano riempiti di lubrificante e non contengano sacche d'aria. Si devono evitare tubazioni lunghe e diametri di tubo stretti. I tubi devono essere installati in pendenza.

Il conteggio degli impulsi risulta dalle quantità parziali e dalle dimensioni del distributore a pistone. L'intervallo fra due impulsi può essere calcolato dal rapporto fra il numero di impulsi e l'intervallo di rilubrificazione. Inoltre, devono essere rispettate le norme del produttore del sistema di lubrificazione.

Tabella 5.11 Quantità di lubrificante per la lubrificazione ad olio - serie HG, QH, EG, QE, CG, WE, QW, RG, QR

Dimensione	Quantità parziale di lubrificazione iniziale [cm³].			Quantità di rilubrificazione [cm³].		
	Carico medio (S)	Per applicazioni pesanti (C)	Per applicazioni superpesanti (H)	Carico medio (S)	Per applicazioni pesanti (C)	Per applicazioni superpesanti (H)
15, 17	0.3 (3 ×)	0.3 (3 ×)	_	0.3	0.3	_
20, 21	0.5 (3 ×)	0.5 (3 ×)	0.5 (3 ×)	0.5	0.5	0.5
25, 27	0.7 (3 ×)	0.8 (3 ×)	1.0 (3 ×)	0.7	0.8	1.0
30	0.9 (3×)	1.0 (3 ×)	1.2 (3 ×)	0.9	1.0	1.2
35	1.2 (3 ×)	1.5 (3 ×)	1.8 (3 ×)	1.2	1.5	1.8
45	_	1.7 (3 ×)	2.0 (3 ×)	_	1.7	2.0
50, 55	_	2.5 (3 ×)	2.8 (3 ×)	_	2.5	2.8
65	_	4.5 (3 ×)	4.8 (3 ×)	_	4.5	4.8

Nel caso della guida miniaturizzata MG, si consiglia di effettuare la lubrificazione ad olio attraverso la guida profilata. In questo caso, applicare il lubrificante in modo uniforme, ad esempio con una spazzola adatta, sulle guide a sfere su tutta la lunghezza della guida profilata. Quindi far scorrere il carrello per tutta la corsa e rimuovere l'olio in eccesso.

5.13.5 Dimensioni dei distributori a pistone per unità di alimentazione (sistemi a una linea) per la lubrificazione con olio

Per garantire una lubrificazione sufficiente, è necessario rispettare le seguenti dimensioni minime per i distributori a pistone. L'intervallo tra i singoli impulsi di lubrificazione risulta dalla quantità di rilubrificazione, dall'intervallo di rilubrificazione e dalla dimensione del distributore a pistone:

Intervallo fra gli impulsi di lubrificazione [km] = $\frac{\text{dimensione del distributore a pistone [cm^3]}}{\text{Quantità di rilubrificazione [cm^3]}} \times \text{Intervallo di rilubrificazione [km]}$

5.14 Rilubrificazione

ATTENZIONE!

Pericolo di danneggiamento delle guide lineari in caso di lubrificazione insufficiente!

Una quantità insufficiente o eccessiva di lubrificante/lubrificazione eccessiva può danneggiare o distruggere il prodotto.

- Garantire una rilubrificazione sufficiente e regolare!
- ▶ Rispettare la procedura indicata per evitare di danneggiare il prodotto!

Gli intervalli di lubrificazione dipendono fortemente dalle condizioni di esercizio (carichi, velocità, accelerazione) e dalle condizioni ambientali (temperatura, fluidi, sporcizia, ecc.). Influenze ambientali come carichi elevati, vibrazioni, lunghe distanze di percorrenza e sporcizia possono ridurre gli intervalli di lubrificazione. Una volta trascorso l'intervallo di lubrificazione, immettere la quantità di lubrificante come specificato nel Capitolo 5.13 azionando il distributore in una sola azione o regolando di conseguenza il sistema di lubrificazione centrale.

Controllare se è visibile una pellicola d'olio lungo tutta la guida. In caso contrario, aumentare la quantità di lubrificante.

5.14.1 Intervalli di rilubrificazione per la lubrificazione a grasso

Tra le altre condizioni, gli intervalli di rilubrificazione dipendono dal rapporto di carico P/Cdyn, dove P sta per il carico dinamico equivalente e Cdyn sta per il coefficiente di carico dinamico.

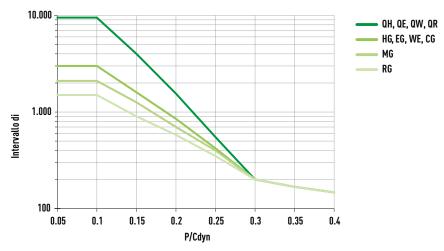


Fig. 5.17 Intervalli di rilubrificazione in funzione del carico per la lubrificazione a grasso

Gli intervalli di rilubrificazione potrebbero ridursi alle seguenti condizioni. In questi casi, consultare HIWIN: v > 3 m/s, a > 30 m/s2, contatto con i fluidi, temperature < 20 °C o > 30 °C, condizioni ambientali sporche.

5.14.2 Intervalli di rilubrificazione per la lubrificazione con grasso a bassa viscosità

Gli intervalli di rilubrificazione per la lubrificazione con grasso a bassa viscosità sono ridotti del 25%, rispetto agli intervalli di rilubrificazione per la lubrificazione con grasso (vedi Capitolo 5.14.1).

5.14.3 Intervalli di rilubrificazione per la lubrificazione con olio

Gli intervalli di rilubrificazione per la lubrificazione con olio sono ridotti del 50% rispetto agli intervalli di rilubrificazione con grasso (vedi Capitolo 5.14.1)

5.15 Smaltimento

ATTENZIONE!

Pericolo causato da sostanze pericolose per l'ambiente!

- Il pericolo per l'ambiente dipende dal tipo di sostanza utilizzata.

 Pulire accuratamente le parti contaminate prima dello smaltimento!
- ▶ Chiarire i requisiti per uno smaltimento sicuro con le aziende di smaltimento ed eventualmente con le autorità competenti!

Fluidi	
Lubrificanti	Smaltire come rifiuti pericolosi nel rispetto dell'ambiente
Stracci per la pulizia sporchi	Smaltire come rifiuti pericolosi nel rispetto dell'ambiente
Carrelli	
Componenti in acciaio	Smaltire separatamente
Componenti in plastica	Smaltire come rifiuto non riciclabile
Rotaie	
Componenti in acciaio	Smaltire separatamente
Tappi di plastica per bulloni	Smaltire come rifiuto non riciclabile

GW-IT-20-06 145

5.17 Accessori per la lubrificazione

5.17.1 Kit autolubrificante E2 per le serie HG, EG e

Il kit autolubrificante E2 è costituito da un'unità di lubrificazione **[5]** situata fra la testata di ricircolo verde frontale rossa **[3]** e la guarnizione **[4]**, da un raccordo **[2]** e da un serbatoio dell'olio intercambiabile **[1]**. Il lubrificante nel serbatoio dell'olio passa attraverso l'elemento di collegamento e va all'unità di lubrificazione, da dove viene trasferito sulle piste della rotaia, grazie a quattro feltrini che per capillarità stendono un sottile film di lubrificante.

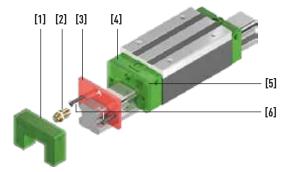


Fig. 5.18 Esploso del carrello autolubrificante E2 per le serie HG, EG e RG

Tabella 5.12 Legenda per la Fig. 5.18

Pos.	Nome
1	Serbatoio dell'olio
2	Raccordo
3	Tenuta frontale
4	Testata di ricircolo
5	Testata di ricircolo
6	Viti di fissaggio

Assemblaggio

- Se necessario, smontare l'ingrassatore esistente e la o le guarnizioni di chiusura.
- Posizionare l'unità di lubrificazione [5] sul carrello.
- Posizionare la/le guarnizione/i di chiusura [3] davanti all'unità di lubrificazione [5].
- Serrare le viti di fissaggio [6].
- Montare il raccordo [2].

Le dimensioni delle viti e e del raccordo possono variare a seconda del tipo di protezione dalla polvere utilizzata.

- > Spingere il serbatoio dell'olio [1] sull'unità di lubrificazione finché non si sente un clic.
- ▶ Il carrello autolubrificante E2 è stato montato.

5.17.2 Carrello autolubrificante E2 per la serie CG (Disponibile solo in Germania)

Il kit autolubrificante E2 per la serie CG è costituito da un'unità di lubrificazione con serbatoio dell'olio [2] e da una guarnizione di chiusura supplementare [1]. Le quattro piste di rotolamento delle sfere vengono lubrificate tramite i quattro feltrini dell'unità di lubrificazione [2] a sfera viene lubrificata tramite l'unità di lubrificazione.

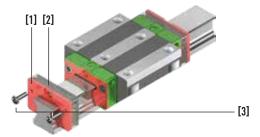


Fig. 5.19 Disegno esploso del carrello autolubrificante E2 per la serie CG

Tabella 5.13 Legenda per la Fig. 5.19

Pos.	Nome
1	Tenuta di chiusura
2	Unità di lubrificazione con serbatoio dell'olio
3	Viti di fissaggio

Assemblaggio

- ▶ Se necessario, smontare l'ingrassatore esistente e la o le guarnizioni di chiusura.
- Posizionare l'unità di lubrificazione [2] sul carrello.
- Posizionare la/le guarnizione/i di chiusura [1] davanti all'unità di lubrificazione [2].
- Serrare le viti di fissaggio [3].

Le dimensioni delle viti e e del raccordo possono variare a seconda del tipo di protezione dalla polvere utilizzata.

▶ Il kit autolubrificante E2 è stato montato.

Istruzioni di assemblaggio

5.17.3 Intervalli di sostituzione

Gli intervalli di sostituzione del serbatoio dell'olio dipendono molto dai carichi e dalle condizioni ambientali. Influenze ambientali come carichi elevati, vibrazioni e sporcizia riducono gli intervalli di sostituzione

La Tabella 5.13 indica l'intervallo massimo tra i controlli del livello di riempimento del serbatoio dell'olio.

Il serbatoio dell'olio può essere riempito con un iniettore attraverso i fori di riempimento laterali oppure si può sostituire l'intero componente.

Tabella 5.14 Quantità di olio nel serbatoio

Modello	Quantità di olio [cm³]	Chilometraggio [km]
HG15E2	1.6	2,000
HG20E2	3.9	4,000
HG25E2	5.1	6,000
HG30E2	7.8	8,000
HG35E2	9.8	10,000
HG45E2	18.5	20,000
HG55E2	25.9	30,000
HG65E2	50.8	40,000
EG15E2	1.7	2,000
EG20E2	2.9	3,000
EG25E2	4.8	5,000
EG30E2	8.9	9,000
RG25E2	5.0	6,000
RG30E2	7.5	8,000
RG35E2	10.7	10,000
RG45E2	18.5	20,000
RG55E2	26.5	30,000
RG65E2	50.5	40,000

Olio standard: Mobil SHC 636

Completamente sintetico a base di idrocarburi (PAO)

Grado di viscosità: ISO VG 680

In alternativa possono essere utilizzati oli della stessa classificazione e viscosità.

5.18 Appendice

5.18.1 Velocità e accelerazioni massime per guide lineari HIWIN

Per le guide lineari HIWIN sono ammesse le seguenti velocità e accelerazioni massime 1):

Tabella 5.15 Velocità e accelerazioni massime ammesse per le guide lineari HIWIN

Modello	Velocità massima v _{max} [m/s] Max. accelerazione a _{max} [m/s	
QH, QE, QW	5	50
HG, EG, CG, WE, QR	4	40
RG	3	30
MG	2	30

¹⁾ A seconda dell'applicazione, sono possibili valori più alti. Consultare HIWIN su questo argomento.

5.18.2 Coppie di serraggio per le viti di fissaggio

Un serraggio insufficiente delle viti di fissaggio compromette fortemente la precisione della guida lineare; si consigliano pertanto le seguenti coppie di serraggio per le relative dimensioni delle viti.

Tabella 5.16 Coppie di serraggio delle viti di fissaggio ai sensi ISO 4762-12.9

Dimensioni vite	Coppia [Nm]	Dimensioni vite	Coppia [Nm]
M2	0.6	M8	31
M3	2.0	M10	70
M4	4.0	M12	120
M5	9.0	M14	160
M6	14.0	M16	200

La capacità di carico della guida lineare è spesso limitata non dalla sua resistenza al carico, ma dal collegamento a vite. Si consiglia pertanto di verificare la portata massima consentita della connessione a vite ai sensi VDI 2230.

Nelle serie RG, QR e CG, i carrelli sono dotati ciascuno di 2 fori filettati aggiuntivi. Alla consegna questi vengono sigillati con tappi di chiusura di colore verde.

Per ottenere un'elevata rigidità della guida lineare anche in presenza di carichi elevati, si consiglia di utilizzare tutti i fori filettati disponibili per il fissaggio della costruzione adiacente.

5.19 Montaggi standard HIWIN Italia

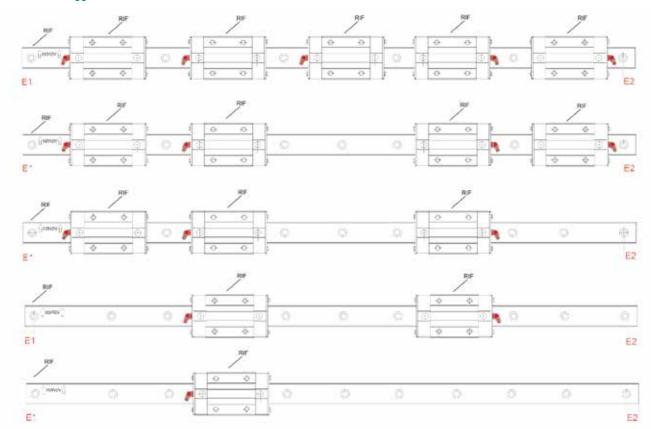


Fig. 5.20 Posizione e direzione dei nippli

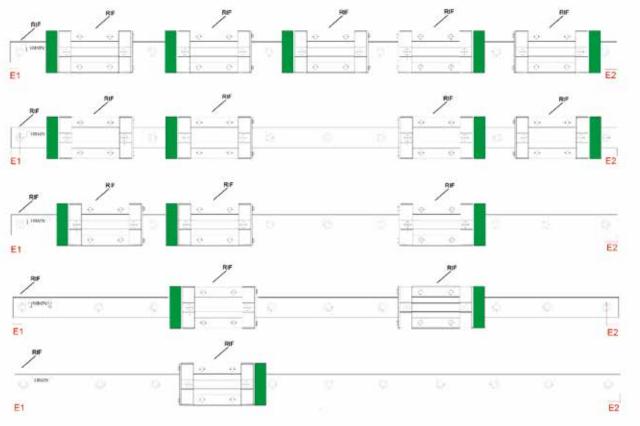
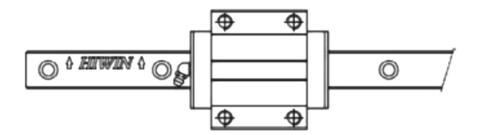
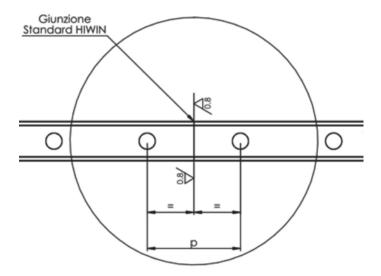



Fig. 5.21 **Kit E2**

Di seguito esempi illustrativi degli Standard Hiwin per assemblaggi e giunzioni di guide gestite in Italia.

5.19.1 Riferimenti per il montaggio


Entrambe le facce laterali della rotaia sono rettificate, il lato indicato dalla freccia è stato misurato durante il controllo qualità.

La faccia di riferimento dei carrelli è caratterizzata da una fresata laterale, il lato indicato dalla freccia è stato misurato durante il controllo qualità.

5.19.2 Giunzione Standard HIWIN

Con il termine giunzione Standard HIWIN intendiamo quando il taglio di giunzione è posto a metà del passo di una rotaia, qui di sotto mostriamo un esempio:

*p = Passo della rotaia

Entrambi i lati della giunzione vengono rettificati, per ottenere una giunzione omogenea.
Nel caso in cui si voglia una giunzione NON standard, bisognerà specificarla sul disegno e verrà segnalata sulla specifica della rotaia con una "E" = rotaia speciale prima della classe di precisione.

Esempio:

HGR25R4500 EC

Massime Laminazioni

Per quanto riguarda la composizione dei vari spezzoni e la lunghezza massima di un singolo spezzone ci si rifà direttamente alla pagina di catalogo con riportate le dimensioni della rotaia desiderata.

HIWIN s.r.l.

Via Pitagora 4, 20861 Brugherio (MB) Tel. +39 039 2876 168 Fax +39 039 2874 373 www.hiwin.it

Tutti i diritti riservati. Non è consentita la riproduzione anche parziale dei contenuti riportati in questa sede senza la previa autorizzazione da parte nostra.

Nota:

I dati tecnici presenti in questo catalogo possono essere modificati senza preavviso.

Guide Lineari

Assi Lineari

Motore lineare Componenti

Viti a ricircolo di sfere

Attuatori lineari

Tavole rotanti

Sistemi con Motori Lineari

Robot

Azionamenti e Servomotori

HIWIN_®

Taiwan HIWIN Technologies Corp.

No. 7, Jingke Road Taichung Precision Machinery Park Taichung 40852, Taiwan Phone +886-4-2359-4510 Fax +886-4-2359-4420 business@hiwin.tw

Taiwan HIWIN Mikrosystem Corp.

No. 6, Jingke Central Road Taichung Precision Machinery Park Taichung 40852, Taiwan Phone +886-4-2355-0110 Fax +886-4-2355-0123 business@hiwinmikro.tw www.hiwinmikro.tw

Italia HIWIN Srl

Via Pitagora 4 20861 Brugherio (MB) Phone +39 039 287 61 68 Fax +39 039 287 43 73 info@hiwin.it www.hiwin.it

Subsidiaries & R&D Centers

Germany

www.hiwin.tw

HIWIN GmbH Brücklesbünd 2 D-77654 Offenburg Phone +49 (0) 7 81 9 32 78 - 0 Fax +49 (0) 7 81 9 32 78 - 90 info@hiwin.de www.hiwin.de

Francia

HIWIN France s.a.r.l. 20 Rue du Vieux Bourg F-61370 Echauffour Phone +33 [2] 33 34 11 15 Fax +33 [2] 33 34 73 79 info@hiwin.fr www.hiwin.fr

Polonia

HIWIN GmbH ul. Puławska 405a PL-02-801 Warszawa Phone +48 22 544 07 07 Fax +48 22 544 07 08 info@hiwin.pl www.hiwin.pl

Svizzera

HIWIN Schweiz GmbH Eichwiesstrasse 20 CH-8645 Jona Phone +41 (0) 55 225 00 25 Fax +41 (0) 55 225 00 20 info@hiwin.ch www.hiwin.ch

Slovacchia

HIWIN s.r.o., o.z.z.o. Mládežnicka 2101 SK-01701 Považská Bystrica Phone +421 424 43 47 77 Fax +421 424 26 23 06 info@hiwin.sk www.hiwin.sk

Republica Ceca

HIWIN s.r.o. Medkova 888/11 CZ-62700 BRNO Phone +42 05 48 528 238 Fax +42 05 48 220 223 info@hiwin.cz www.hiwin.cz

Paesi Bassi HIWIN GmbH info@hiwin.nl www.hiwin.nl

Austria HIWIN GmbH info@hiwin.at www.hiwin.at

Slovenia HIWIN GmbH info@hiwin.si

www.hiwin.si
Ungheria

HIWIN GmbH info@hiwin.hu www.hiwin.hu

Cina HIWIN Corp. www.hiwin.cn

Giappone HIWIN Corp. mail@hiwin.co.jp www.hiwin.co.jp

USA HIWIN Corp. info@hiwin.com www.hiwin.com

Corea HIWIN Corp. www.hiwin.kr

Singapore HIWIN Corp. www.hiwin.sg